muromonab-cd3 and Disease-Models--Animal

muromonab-cd3 has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for muromonab-cd3 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Xestospongin C, a Reversible IP3 Receptor Antagonist, Alleviates the Cognitive and Pathological Impairments in APP/PS1 Mice of Alzheimer's Disease.
    Journal of Alzheimer's disease : JAD, 2019, Volume: 72, Issue:4

    Exaggerated Ca2+ signaling might be one of primary causes of neural dysfunction in Alzheimer's disease (AD). And the intracellular Ca2+ overload has been closely associated with amyloid-β (Aβ)-induced endoplasmic reticulum (ER) stress and memory impairments in AD. Here we showed for the first time the neuroprotective effects of Xestospongin C (XeC), a reversible IP3 receptor antagonist, on the cognitive behaviors and pathology of APP/PS1 AD mice. Male APP/PS1-AD mice (n = 20) were injected intracerebroventricularly with XeC (3μmol) via Alzet osmotic pumps for four weeks, followed by cognition tests, Aβ plaque examination, and ER stress-related protein measurement. The results showed that XeC pretreatment significantly improved the cognitive behavior of APP/PS1-AD mice, raising the spontaneous alteration accuracy in Y maze, decreasing the escape latency and increasing the target quadrant swimming time in Morris water maze; XeC pretreatment also reduced the number of Aβ plaques and the overexpression of ER stress proteins 78 kDa glucose-regulated protein (GRP-78), caspase-12, and CAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) in the hippocampus of APP/PS1 mice. In addition, in vitro experiments showed that XeC effectively ameliorated Aβ1 - 42-induced early neuronal apoptosis and intracellular Ca2+ overload in the primary hippocampal neurons. Taken together, IP3R-mediated Ca2+ disorder plays a key role in the cognitive deficits and pathological damages in AD mice. By targeting the IP3 R, XeC might be considered as a novel therapeutic strategy in AD.

    Topics: Alzheimer Disease; Animals; Cognition; Disease Models, Animal; Hippocampus; Macrocyclic Compounds; Male; Maze Learning; Mice; Mice, Transgenic; Neurons; Neuroprotective Agents; Nootropic Agents; Oxazoles; Plaque, Amyloid

2019
Sexual Dimorphism in a Reciprocal Interaction of Ryanodine and IP
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2017, 02-22, Volume: 37, Issue:8

    Hyperalgesic priming, a model of pain chronification in the rat, is mediated by ryanodine receptor-dependent calcium release. Although ryanodine induces priming in both sexes, females are 5 orders of magnitude more sensitive, by an estrogen receptor α (EsRα)-dependent mechanism. An inositol 1,4,5-triphosphate (IP

    Topics: Animals; Cells, Cultured; Dinoprostone; Disease Models, Animal; Enzyme Inhibitors; Female; Ganglia, Spinal; Hyperalgesia; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Male; Oligodeoxyribonucleotides, Antisense; Oxazoles; Pain Measurement; Pain Threshold; Rats; Rats, Sprague-Dawley; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sensory Receptor Cells; Sex Characteristics; Thapsigargin

2017
Enhanced pulsatile pressure accelerates vascular smooth muscle migration: implications for atherogenesis of hypertension.
    Cardiovascular research, 2008, Dec-01, Volume: 80, Issue:3

    Clinical studies have suggested that pulsatile pressure is an independent risk factor for atherosclerosis. However, it is unknown whether enhanced pulsatile pressure per se directly accelerates vascular smooth muscle cell (VSMC) migration, an important process of atherosclerosis.. Using our original Pressure-loading system with a Boyden chamber, we examined the direct effects of variable pressures and pulse rates on migration of rat aortic VSMCs in vitro. High pulse pressure (180/90 mmHg, pulsatile vs. 180 mmHg, static), high mean pressure (180/90 vs. 90/0 mmHg, with the same pulse pressure), wide pulse pressure (190/110 vs. 170/130 mmHg, with the same mean pressure), and high pulse rate (120 vs. 40 per min) significantly accelerated the VSMC migration (1.35, 2.38, 1.38 and 1.27-fold, respectively). The increase in intracellular calcium levels measured by fura-2/AM fluorescence was proportional to the magnitude of pressure loaded. The pressure-promoted VSMC migration was significantly inhibited by a phospholipase-C inhibitor U-73122 or a calmodulin inhibitor W-7. Inositol 1,4,5-trisphosphate receptor blockers 2-aminoethoxydiphenyl borate or xestospongin-C significantly inhibited the VSMC migration, whereas a ryanodine receptor blocker ryanodine had no effects. Furthermore, a calcium channel blocker (CCB), azelnidipine, and an angiotensin type-1 receptor blocker, olmesartan, also significantly inhibited the VSMC migration.. These results provide direct evidence for the pro-atherogenic effects of enhanced pulsatile pressure and also suggest that the anti-atherogenic actions of CCBs and angiotensin type-1 receptor blockers are mediated in part by their direct inhibitory effects on VSMC migration in addition to their anti-hypertensive effects.

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Atherosclerosis; Azetidinecarboxylic Acid; Blood Pressure; Calcium Channel Blockers; Calcium Signaling; Cell Movement; Cells, Cultured; Dihydropyridines; Disease Models, Animal; Equipment and Supplies; Estrenes; Hypertension; Imidazoles; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Muscle, Smooth, Vascular; Oxazoles; Pyrrolidinones; Rats; Rats, Wistar; Signal Transduction; Tetrazoles; Type C Phospholipases

2008