muramidase and Niemann-Pick-Disease--Type-C

muramidase has been researched along with Niemann-Pick-Disease--Type-C* in 3 studies

Other Studies

3 other study(ies) available for muramidase and Niemann-Pick-Disease--Type-C

ArticleYear
Toll-like receptor mediated lysozyme expression in Niemann-pick disease, type C1.
    Molecular genetics and metabolism, 2020, Volume: 131, Issue:3

    Niemann-Pick type C1 (NPC1) is a rare neurodegenerative disease. In NPC1 mouse cerebella, the antibacterial enzyme, lysozyme (Lyz2), is significantly increased in multiple cell types. Due to its possible role in toxic fibril deposition, we confirmed Lyz2 overexpression in culture in different control and NPC1 cell types including human NPC1 fibroblasts. Lyz2 expression is induced by Toll-like receptors potentially in response to lipid storage but does not play a functional role in NPC disease pathology.

    Topics: Animals; Astrocytes; Fibroblasts; Gene Expression; Humans; Intracellular Signaling Peptides and Proteins; Mice; Mice, Knockout; Microglia; Muramidase; Niemann-Pick C1 Protein; Niemann-Pick Disease, Type C; Toll-Like Receptors

2020
Plasma signature of neurological disease in the monogenetic disorder Niemann-Pick Type C.
    The Journal of biological chemistry, 2014, Mar-21, Volume: 289, Issue:12

    Early diagnosis of neurological disorders would greatly improve their management and treatment. A major hurdle is that inflammatory products of cerebral disease are not easily detected in blood. Inflammation in multiple organs and heterogeneity in disease present additional challenges in distinguishing the extent to which a blood-based marker reflects disease in brain or other afflicted organs. Murine models of the monogenetic disorder Niemann-Pick Type C present aggressive forms of cerebral and liver inflammatory disease. Microarray analyses previously revealed age-dependent changes in innate immunity transcripts in the mouse brain. We have now validated four putative secretory inflammatory markers that are also elevated in mouse liver. We include limited, first time analysis of human Niemann-Pick Type C liver and cerebellum. Furthermore, we utilized 2-hydroxypropyl-β-cyclodextrin (HPβCD, an emerging therapeutic) administered intraperitoneally in mice, which abrogates inflammatory pathology in the liver but has limited effect on the brain. By analyzing the corresponding effects on inflammatory plasma proteins, we identified cathepsin S as a lead indicator of liver disease. In contrast, lysozyme was a marker of both brain and liver disease. 2-Hydroxypropyl-β-cyclodextrin had no effect on transcripts of neuron-specific 24-hydroxylase, and its product 24(S)-hydroxycholesterol was not a useful indicator in mouse plasma. Our data suggest that dual analysis of levels of the inflammatory markers lysozyme and cathepsin S may enable detection of multiple distinct states of neurodegeneration in plasma.

    Topics: 2-Hydroxypropyl-beta-cyclodextrin; Animals; beta-Cyclodextrins; Brain; Cathepsins; Disease Models, Animal; Female; Gene Deletion; Humans; Inflammation; Intracellular Signaling Peptides and Proteins; Liver; Male; Mice; Mice, Inbred BALB C; Muramidase; Niemann-Pick C1 Protein; Niemann-Pick Disease, Type C; Proteins

2014
Genomic expression analyses reveal lysosomal, innate immunity proteins, as disease correlates in murine models of a lysosomal storage disorder.
    PloS one, 2012, Volume: 7, Issue:10

    Niemann-Pick Type C (NPC) disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and a lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional, neurological lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1(-/-) mice relative to Npc1(+/-) at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates of neurological and/or liver disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gaucher's disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1(-/-) as well as Balb/c Npc1(nmf164) mice (bearing a point mutation closer to human disease mutants) and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1(-/-) mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry. These data revealed neutrophil elevation in the Npc1(-/-) spleen and liver (where large foci were detected proximal to damaged tissue). Together our results yield a set of lysosomal, secretory innate immunity genes that have potential to be developed as pan or specific plasma markers for neurological diseases associated with lysosomal storage and where diagnosis is a major problem. Further, the accumulation of neutrophils in diseased organs (hitherto not associated with NPC) suggests their role in pathophysiology and disease exacerbation.

    Topics: Aging; Animals; Biomarkers; Brain; Disease Progression; Female; Gene Expression; Humans; Immunity, Innate; Intracellular Signaling Peptides and Proteins; Liver; Lysosomes; Male; Mice; Mice, Knockout; Muramidase; Mutation; Neutrophil Infiltration; Neutrophils; Niemann-Pick C1 Protein; Niemann-Pick Disease, Type C; Proteins; Spleen

2012