mrk-409 and Disease-Models--Animal

mrk-409 has been researched along with Disease-Models--Animal* in 2 studies

Trials

1 trial(s) available for mrk-409 and Disease-Models--Animal

ArticleYear
MRK-409 (MK-0343), a GABAA receptor subtype-selective partial agonist, is a non-sedating anxiolytic in preclinical species but causes sedation in humans.
    Journal of psychopharmacology (Oxford, England), 2011, Volume: 25, Issue:3

    MRK-409 binds to α1-, α2-, α3- and α5-containing human recombinant GABA(A) receptors with comparable high affinity (0.21-0.40 nM). However, MRK-409 has greater agonist efficacy at the α3 compared with α1 subtypes (respective efficacies relative to the full agonist chlordiazepoxide of 0.45 and 0.18). This compound readily penetrates the brain in rats and occupies the benzodiazepine site of GABA(A) receptors, measured using an in vivo [(3)H]flumazenil binding assay, with an Occ(50) of 2.2 mg/kg p.o. and a corresponding plasma EC(50) of 115 ng/mL. Behaviourally, the α3-preferring agonist efficacy profile of MRK-409 produced anxiolytic-like activity in rodent and primate unconditioned and conditioned models of anxiety with minimum effective doses corresponding to occupancies, depending on the particular model, ranging from ∼35% to 65% yet there were minimal overt signs of sedation at occupancies greater than 90%. In humans, however, safety and tolerability studies showed that there was pronounced sedation at a dose of 2 mg, resulting in a maximal tolerated dose of 1 mg. This 2 mg dose corresponded to a C(max) plasma concentration of 28 ng/mL, which, based on the rodent plasma EC(50) for occupancy of 115 ng/mL, suggested that sedation in humans occurs at low levels of occupancy. This was confirmed in human positron emission tomography studies, in which [(11)C]flumazenil uptake following a single dose of 1 mg MRK-409 was comparable to that of placebo, indicating that occupancy of GABA(A) receptor benzodiazepine binding sites by MRK-409 was below the limits of detection (i.e. <10%). Taken together, these data show that MRK-409 causes sedation in humans at a dose (2 mg) corresponding to levels of occupancy considerably less than those predicted from rodent models to be required for anxiolytic efficacy (∼35-65%). Thus, the preclinical non-sedating anxiolytic profile of MRK-409 did not translate into humans and further development of this compound was halted.

    Topics: Adolescent; Adult; Animals; Anti-Anxiety Agents; Anxiety; Binding Sites; Brain; Chlordiazepoxide; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; GABA-A Receptor Agonists; Heterocyclic Compounds, 4 or More Rings; Humans; Hydrocarbons, Fluorinated; Male; Mice; Middle Aged; Positron-Emission Tomography; Protein Binding; Protein Subunits; Rats; Rats, Sprague-Dawley; Saimiri; Species Specificity; Tissue Distribution; Young Adult

2011

Other Studies

1 other study(ies) available for mrk-409 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020