morroniside has been researched along with Colitis* in 1 studies
1 other study(ies) available for morroniside and Colitis
Article | Year |
---|---|
Protective effects of iridoid glycosides on acute colitis via inhibition of the inflammatory response mediated by the STAT3/NF-кB pathway.
Morroniside and loganin are iridoid glycosides extracted from Cornus officinalis, a plant species widely used in traditional Chinese medicine. However, the anti-inflammatory effects of morroniside and loganin in colitis are barely understood. The aim of the present study was to explore the effects of morroniside and loganin on the dextran sodium sulfate (DSS)-induced murine model of colitis and an LPS-induced colorectal cancer (CRC) cell inflammation model, and to clarify the underlying mechanisms. We found that morroniside and loganin were able to ameliorate clinical features, including disease activity index (DAI), histological inflammation score and periodic acid-Schiff staining (PAS). In the mouse model, morroniside and loganin treatment increased expression of tight junction proteins (TJs) and decreased pro-inflammatory cytokine production. Moreover, our findings showed that the expression of p-STAT3 and p-p65 were suppressed compared to the disease group. In in vitro experiments, treatment with morroniside and loganin had no obvious effects on proliferative activity in HCT116 cells and HIEC-6 cells. Expression of pro-inflammatory cytokines was inhibited by morroniside and loganin treatment in comparison with the LPS-treated group. Taken together, morroniside and loganin have beneficial effects on colitis in vivo and are anti-inflammatory in vitro. Possible mechanisms of the anti-inflammatory response may include blockade of the STAT3/NF-κB pathway. Topics: Animals; Anti-Inflammatory Agents; Cell Line; Colitis; Colitis, Ulcerative; Cornus; Dextran Sulfate; Disease Models, Animal; Glycosides; Humans; Iridoid Glycosides; Iridoids; Male; Medicine, Chinese Traditional; Mice; Mice, Inbred C57BL; NF-kappa B; Phosphorylation; Signal Transduction; STAT3 Transcription Factor | 2020 |