morphine-6-glucuronide and Hypercapnia

morphine-6-glucuronide has been researched along with Hypercapnia* in 2 studies

Trials

2 trial(s) available for morphine-6-glucuronide and Hypercapnia

ArticleYear
Pharmacodynamic effect of morphine-6-glucuronide versus morphine on hypoxic and hypercapnic breathing in healthy volunteers.
    Anesthesiology, 2003, Volume: 99, Issue:4

    Morphine-6-glucuronide (M6G) is an active metabolite of morphine that is generally associated with less respiratory depression than morphine. Because M6G will be on the market in the near future, the authors assessed the time profile and relative potency of M6G's effect versus morphine's effect on carbon dioxide-driven and hypoxic breathing.. In nine healthy female volunteers, the effects of 0.2 mg/kg intravenous M6G, 0.13 mg/kg intravenous morphine, and intravenous placebo were tested on ventilation at a fixed end-tidal pressure of carbon dioxide (Petco2) of 45 mmHg (Vi45) and on the acute hypoxic ventilatory response (AHR). All subjects participated in all three arms of the study. Respiratory studies were performed at 1-h intervals for 7 h after drug infusion. The data were analyzed using a population dose-driven approach, which uses a dose rate in function of time as input function driving the pharmacodynamics, and a population pharmacokinetic-pharmacodynamic (PK/PD) approach in which fixed pharmacokinetic parameter values from the literature were used as input function to the respiratory model. From the latter analysis, the authors obtained the blood effect-site equilibration half-life (t1/2ke0) and the effect-site concentration producing 25% depression of Vi45 and AHR (C25). Values reported are mean +/- SE.. Placebo had no effect on Vi45 or AHR over time. Both analysis approaches yielded good descriptions of the data with comparable model parameters. M6G PK/PD model parameters for Vi45 were t1/2ke0 2.1 +/- 0.2 h and C25 528 +/- 88 nm and for AHR were t1/2ke0 1.0 +/- 0.1 h and C25 873 +/- 81 nm. Morphine PK/PD model parameters for Vi45 were t1/2ke0 3.8 +/- 0.9 h and C25 28 +/- 6 nm and for AHR were t1/2ke0 4.3 +/- 0.6 h and C25 16 +/- 2 nm.. Morphine is more potent in affecting hypoxic ventilatory control than M6G, with a potency ratio ranging from 1:19 for Vi45 to 1:50 for AHR. At drug concentrations causing 25% depression of Vi45, M6G caused only 15% depression of AHR, whereas morphine caused greater than 50% depression of AHR. Furthermore, the speed of onset/offset of M6G is faster than morphine by a factor of approximately 2. The authors discuss some of the possible mechanisms for the observed differences in opioid behavior.

    Topics: Adult; Confidence Intervals; Dose-Response Relationship, Drug; Double-Blind Method; Female; Humans; Hypercapnia; Hypoxia; Morphine; Morphine Derivatives; Pulmonary Ventilation

2003
Effects of intrathecal morphine on the ventilatory response to hypoxia.
    The New England journal of medicine, 2000, Oct-26, Volume: 343, Issue:17

    Intrathecal administration of morphine produces intense analgesia, but it depresses respiration, an effect that can be life-threatening. Whether intrathecal morphine affects the ventilatory response to hypoxia, however, is not known.. We randomly assigned 30 men to receive one of three study treatments in a double-blind fashion: intravenous morphine (0.14 mg per kilogram of body weight) with intrathecal placebo; intrathecal morphine (0.3 mg) with intravenous placebo; or intravenous and intrathecal placebo. The selected doses of intravenous and intrathecal morphine produce similar degrees of analgesia. The ventilatory response to hypercapnia, the subsequent response to acute hypoxia during hypercapnic breathing (targeted end-tidal partial pressures of expired oxygen and carbon dioxide, 45 mm Hg), and the plasma levels of morphine and morphine metabolites were measured at base line (before drug administration) and 1, 2, 4, 6, 8, 10, and 12 hours after drug administration.. At base line, the mean (+/-SD) values for the ventilatory response to hypoxia (calculated as the difference between the minute ventilation during the second full minute of hypoxia and the fifth minute of hypercapnic ventilation) were similar in the three groups: 38.3+/-23.2 liters per minute in the placebo group, 33.5+/-16.4 liters per minute in the intravenous-morphine group, and 30.2+/-11.6 liters per minute in the intrathecal-morphine group (P=0.61). The overall ventilatory response to hypoxia (the area under the curve) was significantly lower after either intravenous morphine (20.2+/-10.8 liters per minute) or intrathecal morphine (14.5+/-6.4 liters per minute) than after placebo (36.8+/-19.2 liters per minute) (P=O.003). Twelve hours after treatment, the ventilatory response to hypoxia in the intrathecal-morphine group (19.9+/-8.9 liters per minute), but not in the intravenous-morphine group (30+/-15.8 liters per minute), remained significantly depressed as compared with the response in the placebo group (40.9+/-19.0 liters per minute) (P= 0.02 for intrathecal morphine vs. placebo). Plasma concentrations of morphine and morphine metabolites either were not detectable after intrathecal morphine or were much lower after intrathecal morphine than after intravenous morphine.. Depression of the ventilatory response to hypoxia after the administration of intrathecal morphine is similar in magnitude to, but longer-lasting than, that after the administration of an equianalgesic dose of intravenous morphine.

    Topics: Adolescent; Adult; Analgesics, Opioid; Area Under Curve; Double-Blind Method; Humans; Hypercapnia; Hypoxia; Infusions, Intravenous; Injections, Spinal; Male; Middle Aged; Morphine; Morphine Derivatives; Respiration

2000