morphine-6-glucuronide and Body-Weight

morphine-6-glucuronide has been researched along with Body-Weight* in 6 studies

Trials

1 trial(s) available for morphine-6-glucuronide and Body-Weight

ArticleYear
Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children.
    British journal of anaesthesia, 2004, Volume: 92, Issue:2

    Descriptions of the pharmacokinetics and metabolism of morphine and its metabolites in young children are scant. Previous studies have not differentiated the effects of size from those related to age during infancy.. Postoperative children 0-3 yr old were given an intravenous loading dose of morphine hydrochloride (100 micro g kg(-1) in 2 min) followed by either an intravenous morphine infusion of 10 micro g h(-1) kg(-1) (n=92) or 3-hourly intravenous morphine boluses of 30 micro g kg(-1) (n=92). Additional morphine (5 micro g kg(-1)) every 10 min was given if the visual analogue (VAS, 0-10) pain score was >/=4. Arterial blood (1.4 ml) was sampled within 5 min of the loading dose and at 6, 12 and 24 h for morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). The disposition of morphine and formation clearances of morphine base to its glucuronide metabolites and their elimination clearances were estimated using non-linear mixed effects models.. The analysis used 1856 concentration observations from 184 subjects. Population parameter estimates and their variability (%) for a one-compartment, first-order elimination model were as follows: volume of distribution 136 (59.3) litres, formation clearance to M3G 64.3 (58.8) litres h(-1), formation clearance to M6G 3.63 (82.2) litres h(-1), morphine clearance by other routes 3.12 litres h(-1) per 70 kg, elimination clearance of M3G 17.4 (43.0) litres h(-1), elimination clearance of M6G 5.8 (73.8) litres h(-1). All parameters are standardized to a 70 kg person using allometric 3/4 power models and reflect fully mature adult values. The volume of distribution increased exponentially with a maturation half-life of 26 days from 83 litres per 70 kg at birth; formation clearance to M3G and M6G increased with a maturation half-life of 88.3 days from 10.8 and 0.61 litres h(-1) per 70 kg respectively at birth. Metabolite formation decreased with increased serum bilirubin concentration. Metabolite clearance increased with age (maturation half-life 129 days), and appeared to be similar to that described for glomerular filtration rate maturation in infants.. M3G is the predominant metabolite of morphine in young children and total body morphine clearance is 80% that of adult values by 6 months. A mean steady-state serum concentration of 10 ng ml(-1) can be achieved in children after non-cardiac surgery in an intensive care unit with a morphine hydrochloride infusion of 5 micro g h(-1) kg(-1) at birth (term neonates), 8.5 micro g h(-1) kg(-1) at 1 month, 13.5 micro g h(-1) kg(-1) at 3 months and 18 micro g h(-1) kg(-1) at 1 year and 16 micro g h(-1) kg(-1) for 1- to 3-yr-old children.

    Topics: Aging; Analgesics, Opioid; Body Weight; Child, Preschool; Drug Administration Schedule; Female; Half-Life; Humans; Infant; Infant, Newborn; Male; Models, Biological; Morphine; Morphine Derivatives; Pain, Postoperative; Single-Blind Method

2004

Other Studies

5 other study(ies) available for morphine-6-glucuronide and Body-Weight

ArticleYear
Morphine Dose Optimization in Critically Ill Pediatric Patients With Acute Respiratory Failure: A Population Pharmacokinetic-Pharmacogenomic Study.
    Critical care medicine, 2019, Volume: 47, Issue:6

    To develop a pharmacokinetic-pharmacogenomic population model of morphine in critically ill children with acute respiratory failure.. Prospective pharmacokinetic-pharmacogenomic observational study.. Thirteen PICUs across the United States.. Pediatric subjects (n = 66) mechanically ventilated for acute respiratory failure, weight greater than or equal to 7 kg, receiving morphine and/or midazolam continuous infusions.. Serial blood sampling for drug quantification and a single blood collection for genomic evaluation.. Concentrations of morphine, the two main metabolites, morphine-3-glucuronide and morphine-6-glucuronide, were quantified by high-performance liquid chromatography tandem mass spectrometry/mass spectroscopy. Subjects were genotyped using the Illumina HumanOmniExpress genome-wide single nucleotide polymorphism chip. Nonlinear mixed-effects modeling was performed to develop the pharmacokinetic-pharmacogenomic model. A two-compartment model with linear elimination and two individual compartments for metabolites best describe morphine disposition in this population. Our analysis demonstrates that body weight and postmenstrual age are relevant predictors of pharmacokinetic parameters of morphine and its metabolites. Furthermore, our research shows that a duration of mechanical ventilation greater than or equal to 10 days reduces metabolite formation and elimination upwards of 30%. However, due to the small sample size and relative heterogeneity of the population, no heritable factors associated with uridine diphosphate glucuronyl transferase 2B7 metabolism of morphine were identified.. The results provide a better understanding of the disposition of morphine and its metabolites in critically ill children with acute respiratory failure requiring mechanical ventilation due to nonheritable factors. It also provides the groundwork for developing additional studies to investigate the role of heritable factors.

    Topics: Acute Disease; Adolescent; Age Factors; Analgesics, Opioid; Body Weight; Child; Child, Preschool; Critical Illness; Female; Genotype; Glucuronosyltransferase; Humans; Infant; Male; Morphine; Morphine Derivatives; Pharmacogenomic Testing; Prospective Studies; Respiration, Artificial; Respiratory Insufficiency; Time Factors

2019
Morphine and morphine-6beta-glucuronide-induced feeding are differentially reduced by G-protein alpha-subunit antisense probes in rats.
    Brain research, 2000, Sep-08, Volume: 876, Issue:1-2

    Although morphine and its active metabolite, morphine-6beta-glucuronide (M6G), each induce mu-opioid receptor-sensitive feeding, different antisense oligodeoxynucleotide (AS ODN) probes directed against the MOR-1 clone produce distinct effects. Thus, MOR-1 AS ODN probes directed against exons 1 or 4 reduce morphine-, but not M6G-induced feeding, whereas probes directed against exons 2 or 3 reduce M6G-, but not morphine-induced feeding. AS ODN probes directed against different G-protein alpha-subunits differentially reduced morphine (G(ialpha2)) and M6G (G(ialpha1))-induced analgesia. The present study evaluated the ability of AS ODN probes directed against G-protein alpha-subunits to reduce feeding induced by morphine and M6G in rats. The AS ODN probes (25 microg, i.c.v.) were administered once 24 h prior to morphine (5 microg, i.c.v.) or M6G (250 ng) and spontaneous free feeding was assessed 1, 2 and 4 h thereafter. In agreement with analgesic studies, morphine-induced feeding was significantly reduced by the G(ialpha2) AS ODN probe. Morphine-induced feeding was unaffected by AS ODN probes directed against either G(ialpha1), G(ialpha3), G(oalpha), G(x/zalpha), G(qalpha) or a nonsense control probe, and was significantly enhanced by pretreatment with the G(salpha) probe. In contrast, M6G-induced feeding was significantly reduced by AS ODN probes directed against either G(ialpha1), G(ialpha3) or G(x/zalpha), whereas AS ODN probes targeting G(ialpha2), G(oalpha), G(salpha), G(qalpha) or a nonsense control probe were ineffective. When M6G-induced feeding was assessed at a dose (500 ng) which was sensitive to MOR-1 AS ODN effects, none of the G-protein alpha-subunit AS ODN probes were effective. These data indicate that morphine and M6G-induced feeding are mediated through different G-protein alpha-subunits, and provide further evidence for separate and distinct molecular mechanisms mediating these functional responses through different opioid receptors. This strongly suggests that M6G may act through a novel opioid receptor displaying a distinct pharmacological mechanism.

    Topics: Animals; Body Weight; Eating; GTP-Binding Proteins; Male; Morphine; Morphine Derivatives; Oligonucleotides, Antisense; Protein Isoforms; Rats; Rats, Sprague-Dawley

2000
Role of morphine glucuronide metabolites in morphine dependence in the rat.
    Pharmacology, biochemistry, and behavior, 1997, Volume: 57, Issue:4

    Concentrations of morphine and its 3- and 6-glucuronide metabolites (M3G and M6G) in plasma, brain, and urine of rats exposed to morphine for either 24 or 48 h were measured using high-performance liquid chromatography. In another group of morphine-treated rats, the intensity of naloxone-precipitated withdrawal behaviours was monitored at 24 and 48 h. The behavioural effects of M3G in opiate-naive and opiate-dependent rats were also investigated. Morphine was present in plasma, urine, and brain at 24 and 48 h, whereas M3G was detected in plasma and urine only. M6G was not present in detectable quantities in either plasma, urine, or brain. Although plasma concentrations of M3G were similar in both time groups, rats treated for 48 h had significantly larger quantities of M3G in their urine than did the other treatment groups. The incidence of withdrawal behaviour was significantly higher in animals exposed to morphine for 48 h than in those with only 24 h of exposure, M3G had no behavioural effects in the opiate-naive rats and did not precipitate an opiate-abstinence syndrome in morphine-dependent rats. From these results, it was concluded that although M3G is the major product formed by morphine breakdown in rats, it is unlikely that it is involved in the development of morphine dependence in this species.

    Topics: Animals; Body Weight; Brain; Defecation; Female; Morphine; Morphine Dependence; Morphine Derivatives; Naloxone; Narcotic Antagonists; Rats; Rats, Wistar; Substance Withdrawal Syndrome

1997
Plasma and cerebrospinal fluid concentrations of morphine and morphine glucuronides after oral morphine. The influence of renal failure.
    Anesthesiology, 1994, Volume: 81, Issue:1

    In patients with renal failure, morphine may cause prolonged narcosis and respiratory depression. Accumulation of the pharmacologically active metabolite morphine-6-glucuronide (M-6G) may explain this effect of morphine in patients with renal failure. After a single oral dose, morphine and its conjugates were measured in the plasma and the cerebrospinal fluid (CSF) in patients with renal failure.. Eight patients with normal renal function and six patients with renal failure requiring dialysis were studied after operation under spinal anesthesia. Plasma and CSF concentrations of morphine, morphine-3-glucuronide (M-3G), and M-6G were measured by high-pressure liquid chromatography every 4 h for 24 h after an oral dose of 30 mg morphine.. The area under morphine plasma concentration-time curve from 0 to 24 h increased from 38 +/- 4 ng.ml-1 x h in patients with normal renal function to 110 ng.ml-1 x h in those with renal failure (P < 0.01). In patients with renal failure, plasma concentrations of M-3G and M-6G were higher at 4 h and remained at an increased level until the end of the study. The peak CSF concentration of morphine at 8 h was similar in those with renal failure or normal renal function, 1.8 +/- 0.4 and 2.0 +/- 0.6 ng.ml-1 respectively. M-3G and M-6G in CSF reached a maximum at 12 h in patients with normal renal function, whereas in those with renal failure the concentrations gradually increased so that the highest concentrations were observed at 24 h. At 24 h, CSF M-6G concentration was 15 times greater in patients with renal failure than in those with normal renal function.. We conclude that M-3G and M-6G readily cross the blood-brain barrier in patients with normal renal function or with renal failure. In patients with renal failure, the retention of plasma M-6G induces a progressive accumulation of this active metabolite in CSF; this accumulation may explain the increased susceptibility to morphine in patients with renal failure.

    Topics: Administration, Oral; Aged; Aged, 80 and over; Blood-Brain Barrier; Body Weight; Humans; Kidney; Middle Aged; Morphine; Morphine Derivatives; Renal Insufficiency

1994
Morphine-6-beta-D-glucuronide respiratory pharmacodynamics in the neonatal guinea pig.
    The Journal of pharmacology and experimental therapeutics, 1994, Volume: 268, Issue:1

    Morphine-6-beta-D-glucuronide (M6G) is a metabolite of morphine with opioid activity in adults. No data are available, however, on the developmental pharmacology of M6G including investigation of the respiratory effects of M6G in the neonate. A randomized, placebo-controlled study comparing the time-action, dose-response and potency of the respiratory effects of M6G to morphine was done using a nonanesthetized neonatal guinea pig model and a noninvasive computerized plethysmograph technique. Respiration was measured while the neonate breathed room air followed by 5% CO2 in air. M6G (0.5-5.0 mg/kg) and morphine (1.5-15 mg/kg) administered subcutaneously decreased ventilation in 3-, 7- and 14-day-old neonatal guinea pigs given a 5% CO2 challenge. During CO2 inhalation, time-to-peak action for M6G occurred 21 min later than for morphine. At maximal ventilatory depression on day 3, a dose of 1.5 mg/kg morphine or M6G decreased minute ventilation while breathing 5% CO2 by 30% compared to placebo. Ventilation also decreased as a function of age in both placebo and drug-treated animals. The percent respiratory depression relative to placebo remained constant for a given dose of morphine as the neonate aged, but not for M6G, which increased in potency. M6G was equipotent to morphine on day 3 after birth, but was 8-fold more potent by day 7. This increase in potency persisted through day 14. The increased potency of M6G that accompanies aging may be caused by either a change in M6G disposition or a change in opioid receptors during development of the neonatal guinea pig.

    Topics: Animals; Animals, Newborn; Body Weight; Female; Guinea Pigs; Male; Morphine; Morphine Derivatives; Naloxone; Random Allocation; Respiration; Sex Ratio; Time Factors

1994