morin and Fibrosis

morin has been researched along with Fibrosis* in 2 studies

Other Studies

2 other study(ies) available for morin and Fibrosis

ArticleYear
Morin hydrate attenuates adenine-induced renal fibrosis via targeting cathepsin D signaling.
    International immunopharmacology, 2021, Volume: 90

    Lysosomal proteases such as cathepsins B, D, L, and K can regulate the process of fibrosis in most of the organs. However, the role of cathepsin D (CATD) in kidney fibrosis and corresponding chronic kidney disease (CKD) is still unknown. We investigated whether CATD immunomodulation using morin hydrate (MH) can attenuate kidney fibrosis in CKD. Here, CKD was developed by an oral dosage of adenine (AD) in the mice model. Histopathological detection using H & E and Oil-Red-O staining revealed tissue deposition. An escalation in serum creatinine, albumin, and blood urea nitrogen (BUN) revealed a failure in kidney function. An increase in fibrosis was determined using protein analysis and mRNA analysis of MMP-9 and MMP-2 respectively. Both immunoblot analysis and histological analysis indicated that MH immunomudulated CATD expression in AD treated kidneys. With docking analysis, we found MH can bind with the catalytic core of CATD with binding efficiency of -6.83 kcal/mol. Further, MH prevented AD mediated fibrosis by reducing collagen fragmentation as evidenced by the decrease in MMP-2 (P < 0.05) and MMP-9 (P < 0.001) protein levels. MH lowered the levels of inflammation by reducing the AD enhanced expression of MCP-1 and COX-2 nearly threefold. MH treatment increased body weight, enhance kidney function, and improved survival by nearly 150% compared to AD treated mice. CATD inactivation by MH after AD treatment resulted in decreased ECM degradation, fibrosis, and inflammation which resulted in improved renal function and survival.

    Topics: Adenine; Animals; Cathepsin D; Collagen; Extracellular Matrix; Fibrosis; Flavonoids; Kidney; Kidney Function Tests; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mice; Mice, Inbred BALB C; Renal Insufficiency, Chronic; Signal Transduction; Survival Analysis

2021
Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling.
    Oxidative medicine and cellular longevity, 2016, Volume: 2016

    Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2',7'-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by morin, implying that ROS/MAPK signaling contributes to the relief of airway inflammation. Our findings indicate for the first time that morin alleviates airway inflammation in chronic asthma, which probably occurs via the oxidative stress-responsive MAPK pathway, highlighting a novel profile of morin as a potent agent for asthma management.

    Topics: Animals; Bronchi; Bronchoalveolar Lavage Fluid; Collagen; Cytokines; Epithelial Cells; Fibrosis; Flavonoids; Goblet Cells; Humans; Hyperplasia; Immunization; Immunoglobulin E; Inflammation; Malondialdehyde; MAP Kinase Signaling System; Matrix Metalloproteinase 9; Mice, Inbred BALB C; Ovalbumin; Oxidative Stress; Pneumonia; Reactive Oxygen Species; Th2 Cells; Tumor Necrosis Factor-alpha

2016
chemdatabank.com