morin has been researched along with Breast-Neoplasms* in 4 studies
4 other study(ies) available for morin and Breast-Neoplasms
Article | Year |
---|---|
Inhibition of TPA‑induced metastatic potential by morin hydrate in MCF‑7 human breast cancer cells via the Akt/GSK‑3β/c‑Fos signaling pathway.
Plant flavonoid 2',3,4',5,7‑pentahydroxyflavone (morin hydrate), isolated from the family Moraceae (Morus alba L.), is known to have anti‑inflammatory and anticancer effects. However, its pharmaceutical effects on metastasis have not been fully elucidated to date. Therefore, the current study investigated the effects of morin hydrate on cancer metastasis in MCF‑7 human breast cancer cells. The results showed that morin hydrate suppressed 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA)‑induced cell migration and invasion via the inhibition of matrix metalloproteinase (MMP)‑9 activity. Furthermore, gene expression level of MMP‑9, MMP‑7, urokinase plasminogen activator (uPA), uPA receptor (uPAR) and fibronectin were significantly decreased by morin hydrate treatment. Morin hydrate inhibited the phosphorylation of Akt and glycogen synthase kinase (GSK)‑3β, and downregulated the expression of an activator protein‑1 subunit c‑Fos. In addition, the GSK‑3β phosphorylation and c‑Fos expression were suppressed by PI3K/Akt pathway inhibitors, LY294002 and wortmannin. Taken together, these results demonstrated that morin hydrate reduced the metastatic potential in TPA‑treated MCF‑7 human breast cancer cells via the inhibition of MMPs, uPA and uPAR, and the underlying Akt/GSK‑3β/c‑Fos pathway. Therefore, the present investigation suggested that morin hydrate may be a natural substance with a preventive potential for metastasis in breast cancer cells. Topics: Breast Neoplasms; Cell Movement; Cell Survival; Flavonoids; Gene Expression Regulation, Neoplastic; Glycogen Synthase Kinase 3 beta; Humans; MCF-7 Cells; Neoplasm Invasiveness; Neoplasm Metastasis; Phosphorylation; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-fos; Signal Transduction; Tetradecanoylphorbol Acetate | 2020 |
Morin, a Flavonoid from Moraceae, Inhibits Cancer Cell Adhesion to Endothelial Cells and EMT by Downregulating VCAM1 and Ncadherin.
Morin, a flavonoid found in figs and other Moraceae species, displays a variety of biological actions, exerting antioxidant, antiinflammatory and anticarcinogenic effects. Here, we investigated the anticancer activity of morin focusing on antiadhesive influence. We performed experiments with MDAMB231 human breast cancer cells. Morin inhibited TNFinduced cancer cell adhesion to human umbilical vein endothelial cells (HUVECs) without showing any toxicity. It further inhibited the expression of VCAM1 on MDAMB231 cells as well as HUVECs. Morin also decreased the expression of Ncadherin on MDAMB231 cells. In addition, there was apparent antimetastatic activity in vivo. In conclusion, this study suggested that morin inhibits cancer cell adhesion to HUVECs by reducing VCAM1, and EMT by targeting Ncadherin, and that it features antimetastatic activity in vivo. Further investigation of possible antimetastatic activity of morin against human breast cancer cells is warranted. Topics: Antigens, CD; Antineoplastic Agents; Breast Neoplasms; Cadherins; Cell Adhesion; Cell Line; Cell Line, Tumor; Down-Regulation; Epithelial-Mesenchymal Transition; Female; Flavonoids; Human Umbilical Vein Endothelial Cells; Humans; Moraceae; Vascular Cell Adhesion Molecule-1 | 2016 |
Morin, a flavonoid from Moraceae, suppresses growth and invasion of the highly metastatic breast cancer cell line MDA-MB‑231 partly through suppression of the Akt pathway.
Morin, a flavonoid found in figs and other Moraceae, displays a variety of biological actions, such as anti-oxidant, anti-inflammatory and anti-carcinogenic. However, the anticancer effects of morin and in particular its anti-metastatic effects are not well known. Therefore, in the present study, we investigated the anticancer effects of morin on highly metastatic human breast cancer cells. Our results showed that morin significantly inhibited the colony forming ability of highly metastatic MDA-MB‑231 breast cancer cells from low doses (50 µM) without cytotoxicity. In addition, morin changed MDA-MB‑231 cell morphology from mesenchymal shape to epithelial shape and inhibited the invasion of MDA-MB‑231 cells in a dose-dependent manner. Morin decreased matrix metalloproteinase-9 (MMP-9) secretion and expression of the mesenchymal marker N-cadherin of MDA-MB‑231 cells, suggesting that morin might suppress the EMT process. Furthermore, morin significantly decreased the phosphorylation of Akt, and inhibition of the Akt pathway significantly reduced MDA-MB‑231 invasion. In an in vivo xenograft mouse model, morin suppressed MDA-MB‑231 cancer cell progression. Taken together, our findings suggest that morin exhibits an inhibitory effect on the cancer progression and EMT process of highly metastatic breast cancer cells at least in part through inhibiting Akt activation. This study provides evidence that morin may have anticancer effects against metastatic breast cancer. Topics: Animals; Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Epithelial-Mesenchymal Transition; Female; Flavonoids; Gene Expression Regulation, Neoplastic; Humans; MAP Kinase Signaling System; Mice; Mice, Nude; Moraceae; Neoplasm Invasiveness; Neoplasm Metastasis; Plant Extracts; Xenograft Model Antitumor Assays | 2014 |
Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP).
Flavonoids are an interesting group of natural products ubiquitously present in human diet. Their consumption has been associated with various and differing beneficial health effects. However, several flavonoids have been reported to inhibit the breast cancer resistance protein (BCRP) encoded by the ABCG2 gene. Thus, the consumption of flavonoids with high inhibitory activity could change pharmacokinetics and drug levels of drugs that are BCRP substrates. In cancer patients receiving chemotherapy an increased intake of such flavonoids could lead to adverse effects. We investigated a structurally diverse set of flavonoids, including derivatives with a rare C-methylated structure that were isolated from plants used in traditional medicine. The flavones retusin and ayanin were found to be highly potent inhibitors of BCRP, showing only slightly less potency than Ko143, the most potent ABCG2 inhibitor known so far. The activity data were analyzed by 2D and 3D QSAR analyses and the results revealed the impact of the different substituents at the various positions of the flavonoid core on activity. Additionally, a lateral 2D QSAR analysis of data collected from the literature was performed aiming to derive more general information about the influence of distinct structural features on the inhibitory potency of flavonoids. The comparative QSAR analyses led to a consistent picture of the effects of the different substituents at various positions of the flavone backbone. The following structural features were found to contribute positively to BCRP inhibition: a hydroxyl group in position 5, double bond between position 2 and 3, and a methoxy group in position 3. The exchange of a 3-methoxy group by an OH-group acting also as a hydrogen bond donor, resulted in decrease in activity underlining the potential role of the hydrogen bond acceptor 3-OCH(3) for the interaction with BCRP. Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Breast Neoplasms; Cell Line, Tumor; Drug Resistance, Neoplasm; Female; Flavonoids; Humans; Hydrogen Bonding; Models, Molecular; Neoplasm Proteins; Quantitative Structure-Activity Relationship | 2011 |