morin and Arthritis--Rheumatoid

morin has been researched along with Arthritis--Rheumatoid* in 3 studies

Other Studies

3 other study(ies) available for morin and Arthritis--Rheumatoid

ArticleYear
Morin Acts as a USP7 Inhibitor to Hold Back the Migration of Rheumatoid Arthritis Fibroblast-Like Synoviocytes in a "Prickle1-mTORC2" Dependent Manner.
    Molecular nutrition & food research, 2021, Volume: 65, Issue:19

    The aim of this study is to investigate the effect and detailed mechanisms of morin, an anti-arthritis compound widely distributed in foods of plant origin, on the pathological migration of fibroblast-like synoviocytes (FLS).. The migration of FLS collected from arthritis rats and MH7A cells is induced by platelet-derived growth factor, and an arthritis model in rats is established by Freund's complete adjuvant. The results show that morin remarkably restrains FLS migration but slightly affects FLS apoptosis and proliferation. Moreover, in the progression of FLS migration, focal adhesion (FA) turnover is inhibited by morin via lowering the activation of Paxillin and focal adhesion kinase (FAK) and internalization of integrin β1. Morin disrupts the formation of mTOR complex 2 (mTORC2) and the activation of AKT (S473) and PKCα (S657), and MHY1485 reverses morin-limited FLS migration. Of note, the protein stability of Prickle1, a binding factor of Rictor, is reduced by morin, and MG132 but not Baf A1 shows a repressive effect. Finally, the target protein is identified as ubiquitin-specific protease 7 (USP7) but not USP9X. USP7 overexpressing plasmid weakens morin-affected protein and ubiquitination of Prickle1, and mechanisms are confirmed in vivo by using an overexpressing plasmid and inhibitor.. Morin restricts FLS migration and arthritis by intervening in "USP7-Prickle1-mTORC2" signaling and FA turnover.

    Topics: Animals; Arthritis, Rheumatoid; Cell Movement; Cells, Cultured; Female; Flavonoids; Focal Adhesions; Humans; LIM Domain Proteins; Mechanistic Target of Rapamycin Complex 2; Rats, Wistar; Synoviocytes; Tumor Suppressor Proteins; Ubiquitin Thiolesterase; Ubiquitin-Specific Peptidase 7; Ubiquitination

2021
Targeted delivery of morin, a dietary bioflavanol encapsulated mannosylated liposomes to the macrophages of adjuvant-induced arthritis rats inhibits inflammatory immune response and osteoclastogenesis.
    European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2017, Volume: 115

    The purpose of the study was to develop a liposomal drug delivery system for morin, a dietary polyphenol, in order to target the synovial macrophages and investigate the remission of disease severity in the adjuvant-induced arthritic (AIA) rats. To do so, mannose decorated liposomal morin (ML-Morin) was prepared using the thin film hydration method and the physicochemical properties were characterized. The particle size and zeta potential of liposomal morin (L-Morin) was found to be 127.9nm±2.6 and -24.5mV±0.76, whereas ML-Morin showed an increased value of 132.5nm±5.2 and -54.8mV±0.67 respectively. Further, the drug entrapment efficiency (% EE) of ML-Morin was found 86.7±3.8%. To understand the efficacy of L-Morin, ML-Morin over free-Morin; cellular uptake, production and expression of pro-inflammatory mediators, osteoclastogenic factors, and transcription factors were evaluated in primarily isolated synovial and spleen macrophages. Interestingly, confocal microscopic images showed an increased uptake of ML-Morin in the synovial and spleen macrophages than L-morin. In addition, ML-Morin significantly suppressed the production and mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-17), angiogenic factors (VEGF), an inflammatory enzyme (iNOS), and transcription factor (NF-κB-p65). Furthermore, the protein expression of TNF-α, IL-1β, IL-6, IL-17, RANKL, STAT-3, and p-STAT-3 was found to decrease with increased osteoprotegerin (OPG) expression in the ML-Morin targeted macrophages. Thus, our findings endorsed that, ML-Morin preferential internalization into the macrophages of arthritic rats effectively inhibited the inflammatory immune response and osteoclastogenesis better than the dexamethasone palmitate encapsulated mannosylated liposomes (ML-DP), a reference drug as evidenced by clinical and histological analysis.

    Topics: Animals; Arthritis, Experimental; Arthritis, Rheumatoid; Cytokines; Diet; Female; Flavonoids; Inflammation; Inflammation Mediators; Liposomes; Macrophages; Male; Mannose; Osteogenesis; Rats; Rats, Wistar; Transcription Factor RelA; Vascular Endothelial Growth Factor A

2017
A novel therapeutic approach targeting rheumatoid arthritis by combined administration of morin, a dietary flavanol and non-steroidal anti-inflammatory drug indomethacin with reference to pro-inflammatory cytokines, inflammatory enzymes, RANKL and transcr
    Chemico-biological interactions, 2015, Mar-25, Volume: 230

    The present study was designed to assess the combined efficacy of morin, a dietary flavanol and non-steroidal anti-inflammatory drug indomethacin against adjuvant-induced arthritis in rats, an experimental model for rheumatoid arthritis. Arthritis was induced by intradermal injection of complete freund's adjuvant (0.1 ml) into the right hind paw of the Wistar albino rats. Morin (30 mg/kg b.wt), indomethacin (3 mg/kg b.wt) and combination of morin and indomethacin were administered intraperitoneally (from 11th to 20th day) after adjuvant injection. We have found that the activities/levels of lysosomal acid hydrolases (acid phosphatase, β-galactosidase, N-acetyl glucosaminidase and cathepsin-D), glycoproteins (hexose and hexosamine), urinary constituents (hydroxyproline and glycosaminoglycans), reactive oxygen species (LPO and NO), elastase, inflammatory mediators (TNF-α, IL-1β, MCP-1, VEGF and PGE2) and paw edema were significantly increased in arthritic rats compared to controls. Whereas, the anti-oxidant status (SOD, CAT, GPx, glutathione, and ceruloplasmin), body weight and bone collagen was found to be decreased. The mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-17, IL-6 and MCP-1), inflammatory enzymes (iNOS and COX-2), RANKL, and transcription factors (NF-kB p65 and AP-1) was found upregulated in the ankle joints of arthritic rats in qRT-PCR analysis. In addition, the increased protein expression of NF-kB p65 and COX-2 was also detected by immunohistochemical analysis. On the other hand, the above said imbalances were regulated back effectively to near normal as evidenced by the histopathological and radiological analysis on combined treatment with morin and indomethacin. Our study indicates that the combination therapy was more effective than either single drug alone in suppressing the pathogenesis of RA.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Arthritis, Experimental; Arthritis, Rheumatoid; Cartilage, Articular; Cyclooxygenase 2 Inhibitors; Cytokines; Enzymes; Female; Flavonoids; Gene Expression Regulation; Indomethacin; Inflammation Mediators; Male; NF-kappa B; Oxidative Stress; RANK Ligand; Rats, Wistar; Transcription Factors

2015