monorden has been researched along with Reperfusion-Injury* in 2 studies
2 other study(ies) available for monorden and Reperfusion-Injury
Article | Year |
---|---|
The protective effect of radicicol against renal ischemia--reperfusion injury in mice.
Overexpression of heat shock protein 70 kDa (HSP70) is known to confer cellular protection against ischemia-reperfusion (I/R) injury. Radicicol, a HSP90 inhibitor, has been reported to induce the expression of HSP70 protein. Here we studied whether radicicol attenuated renal I/R injury in vivo. Treatment of mice with radicicol ameliorated renal I/R injury and increased renal HSP70 mRNA and protein. Administration of radicicol with quercetin, an inhibitor of HSP70 induction, eliminated the renoprotective effect of radicicol. Our results suggest that the up-regulation of renal HSP70 protein by radicicol leads to a novel drug therapy against renal I/R injury. Topics: Animals; HSP70 Heat-Shock Proteins; HSP90 Heat-Shock Proteins; Kidney; Macrolides; Male; Mice; Quercetin; Reperfusion Injury; RNA, Messenger; Up-Regulation | 2010 |
Delayed neuronal death in ischemic hippocampus involves stimulation of protein tyrosine phosphorylation.
Glutamate triggers neuronal degeneration after ischemia-reperfusion in the brain. However, the details of intracellular signal transduction that propagates cell death remain unknown. The present work investigated whether protein tyrosine phosphorylation mediates neuronal death in the ischemic brain. Transient forebrain ischemia for 5-10 min in Mongolian gerbils or intoxication with the glutamate analogue kainic acid (12 mg/kg) in Sprague-Dawley rats caused neuronal death selectively in the hippocampus 2-4 days or 1 day later, respectively. Under these conditions, 160-, 115-, 105-, 92-, and 85-kDa proteins showed a significant increase in tyrosyl residue phosphorylation selectively in the hippocampus 3-12 h after ischemia or 4-8 h after kainic acid-induced seizures. Tyrosine kinases, including pp60c-src, were activated without a change of tyrosine phosphatases. Administration of radicicol, a selective inhibitor of tyrosine kinases, attenuated stimulation of tyrosine phosphorylation and hippocampal degeneration after ischemia or kainic acid injection. The results suggest that protein tyrosine phosphorylation might propagate delayed neuronal death in the mature hippocampus through glutamate overload after ischemia-reperfusion. Topics: Animals; Calcium-Calmodulin-Dependent Protein Kinases; Cell Death; Enzyme Inhibitors; Gerbillinae; Hippocampus; Ischemia; Kainic Acid; Lactones; Macrolides; Male; Nerve Degeneration; Nerve Tissue Proteins; Neurons; Phosphoproteins; Phosphotyrosine; Protein Tyrosine Phosphatases; Protein-Tyrosine Kinases; Rats; Reperfusion Injury; Time Factors | 1996 |