monorden has been researched along with Lung-Neoplasms* in 2 studies
2 other study(ies) available for monorden and Lung-Neoplasms
Article | Year |
---|---|
Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer.
The heat shock protein 90 (Hsp90) has a critical role in malignant transformation. Whereas its ability to maintain the functional conformations of mutant and aberrant oncoproteins is established, a transformation-specific regulation of the antiapoptotic phenotype by Hsp90 is poorly understood. By using selective compounds, we have discovered that small-cell lung carcinoma is a distinctive cellular system in which apoptosis is mainly regulated by Hsp90. Unlike the well-characterized antiapoptotic chaperone Hsp70, Hsp90 is not a general inhibitor of apoptosis, but it assumes this role in systems such as small-cell lung carcinoma, in which apoptosis is uniquely dependent on and effected through the intrinsic pathway, without involvement of caspase elements upstream of mitochondria or alternate pathways that are not apoptosome-channeled. These results provide important evidence for a transformation-specific interplay between chaperones in regulating apoptosis in malignant cells. Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Small Cell; Cell Line, Tumor; Cell Transformation, Neoplastic; Dose-Response Relationship, Drug; Drug Design; Drug Screening Assays, Antitumor; Gene Expression Regulation, Neoplastic; HSP90 Heat-Shock Proteins; Humans; Lung Neoplasms; Models, Chemical; Phosphatidylinositol 3-Kinases; Time Factors | 2007 |
Involvement of calcium in the differential induction of heat shock protein 70 by heat shock protein 90 inhibitors, geldanamycin and radicicol, in human non-small cell lung cancer H460 cells.
Both geldanamycin (GA) and radicicol (RA) are HSP90 binding agents that possess antitumour activities. Although the in vitro data indicated that the inhibitory constant of RA is much bigger than that of GA, the in vivo data on drug efficacy might reveal different results. We have recently shown that treatment with GA induces a heat-shock response and that calcium mobilization may be involved in the process. By using induction of HSP70 as the endpoint assay, we found changes in upstream signaling mediators, including HSF1 and calcium mobilization, as well as possible involvement of protein kinase in human non-small cell lung cancer H460 cells treated with GA and RA. Our results demonstrated that calcium mobilization, a calcium dependent and H7-sensitive protein kinase, along with HSF1 activation by phosphorylation, are all involved in the HSP70 induction process triggered by the drugs. However, only GA, but not RA, can provoke a rapid calcium mobilization and thereby result in an instant induction of HSP70. Furthermore, the rapid calcium influx, followed by instant HSP induction, could be achieved in GA- or RA-treated cells placed in a medium containing excessive calcium while the response was completely abolished in cells depleted of calcium. Taken together, our findings suggest that differential calcium signaling may account for the differential induction of HSP and the action of GA and RA. Topics: Benzoquinones; Blotting, Western; Calcium; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; DNA-Binding Proteins; Enzyme Inhibitors; Heat Shock Transcription Factors; HSP70 Heat-Shock Proteins; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Lactones; Lung Neoplasms; Macrolides; Phosphorylation; Protein Kinase C; Quinones; Transcription Factors | 2006 |