monorden and Disease-Models--Animal

monorden has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for monorden and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Potent antitrypanosomal activities of heat shock protein 90 inhibitors in vitro and in vivo.
    The Journal of infectious diseases, 2013, Aug-01, Volume: 208, Issue:3

    African sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is universally fatal if untreated, and current drugs are limited by severe toxicities and difficult administration. New antitrypanosomals are greatly needed. Heat shock protein 90 (Hsp90) is a conserved and ubiquitously expressed molecular chaperone essential for stress responses and cellular signaling. We investigated Hsp90 inhibitors for their antitrypanosomal activity. Geldanamycin and radicicol had nanomolar potency in vitro against bloodstream-form T. brucei; novobiocin had micromolar activity. In structure-activity studies of geldanamycin analogs, 17-AAG and 17-DMAG were most selective against T. brucei as compared to mammalian cells. 17-AAG treatment sensitized trypanosomes to heat shock and caused severe morphological abnormalities and cell cycle disruption. Both oral and parenteral 17-DMAG cured mice of a normally lethal infection of T. brucei. These promising results support the use of inhibitors to study Hsp90 function in trypanosomes and to expand current clinical development of Hsp90 inhibitors to include T. brucei.

    Topics: Animals; Antiprotozoal Agents; Benzoquinones; Disease Models, Animal; Enzyme Inhibitors; Female; HSP90 Heat-Shock Proteins; Lactams, Macrocyclic; Macrolides; Mice; Novobiocin; Structure-Activity Relationship; Treatment Outcome; Trypanosoma brucei brucei; Trypanosomiasis, African

2013
Cyclohexane 1,3-diones and their inhibition of mutant SOD1-dependent protein aggregation and toxicity in PC12 cells.
    Bioorganic & medicinal chemistry, 2012, Jan-15, Volume: 20, Issue:2

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Currently, there is only one FDA-approved treatment for ALS (riluzole), and that drug only extends life, on average, by 2-3 months. Mutations in Cu/Zn superoxide dismutase (SOD1) are found in familial forms of the disease and have played an important role in the study of ALS pathophysiology. On the basis of their activity in a PC12-G93A-YFP high-throughput screening assay, several bioactive compounds have been identified and classified as cyclohexane-1,3-dione (CHD) derivatives. A concise and efficient synthetic route has been developed to provide diverse CHD analogs. The structural modification of the CHD scaffold led to the discovery of a more potent analog (26) with an EC(50) of 700 nM having good pharmacokinetic properties, such as high solubility, low human and mouse metabolic potential, and relatively good plasma stability. It was also found to efficiently penetrate the blood-brain barrier. However, compound 26 did not exhibit any significant life span extension in the ALS mouse model. It was found that, although 26 was active in PC12 cells, it had poor activity in other cell types, including primary cortical neurons, indicating that it can penetrate into the brain, but is not active in neuronal cells, potentially due to poor selective cell penetration. Further structural modification of the CHD scaffold was aimed at improving global cell activity as well as maintaining potency. Two new analogs (71 and 73) were synthesized, which had significantly enhanced cortical neuronal cell permeability, as well as similar potency to that of 26 in the PC12-G93A assay. These CHD analogs are being investigated further as novel therapeutic candidates for ALS.

    Topics: Amino Acid Substitution; Amyotrophic Lateral Sclerosis; Animals; Blood-Brain Barrier; Cyclohexanones; Cyclopropanes; Disease Models, Animal; Humans; Mice; Mice, Transgenic; Mutation; Neurons; PC12 Cells; Phenyl Ethers; Rats; Superoxide Dismutase; Superoxide Dismutase-1

2012
Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach.
    Human molecular genetics, 2004, Jul-01, Volume: 13, Issue:13

    The manipulation of chaperone levels has been shown to inhibit aggregation and/or rescue cell death in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and cell culture models of Huntington's disease (HD) and other polyglutamine (polyQ) disorders. We show here that a progressive decrease in Hdj1, Hdj2, Hsp70, alphaSGT and betaSGT brain levels likely contributes to disease pathogenesis in the R6/2 mouse model of HD. Despite a predominantly extranuclear location, Hdj1, Hdj2, Hsc70, alphaSGT and betaSGT were found to co-localize with nuclear but not with extranuclear aggregates. Quantification of Hdj1 and alphaSGT mRNA levels showed that these do not change and therefore the decrease in protein levels may be a consequence of their sequestration to aggregates, or an increase in protein turnover, possibly as a consequence of their relocation to the nucleus. We have used genetic and pharmacological approaches to assess the therapeutic potential of chaperone manipulation. Ubiquitous overexpression of Hsp70 in the R6/2 mouse (as a result of crossing to Hsp70 transgenics) delays aggregate formation by 1 week, has no effect on the detergent solubility of aggregates and does not alter the course of the neurological phenotype. We used an organotypic slice culture assay to show that pharmacological induction of the heat shock response might be a more useful approach. Radicicol and geldanamycin could both maintain chaperone induction for at least 3 weeks and alter the detergent soluble properties of polyQ aggregates over this time course.

    Topics: Animals; Benzoquinones; Brain; Cell Nucleus; Cells, Cultured; Crosses, Genetic; Disease Models, Animal; Enzyme Inhibitors; Gene Expression Regulation; Huntington Disease; Lactams, Macrocyclic; Lactones; Macrolides; Mice; Molecular Chaperones; Peptides; Quinones; RNA, Messenger

2004