monomethylauristatin-f and Neoplasms

monomethylauristatin-f has been researched along with Neoplasms* in 5 studies

Trials

1 trial(s) available for monomethylauristatin-f and Neoplasms

ArticleYear
First-in-human trial of an anti-5T4 antibody-monomethylauristatin conjugate, PF-06263507, in patients with advanced solid tumors.
    Investigational new drugs, 2017, Volume: 35, Issue:3

    Background The antibody-drug conjugate PF-06263507 targets the cell-surface, tumor-associated antigen 5T4 and consists of a humanized IgG1 conjugated to the microtubule-disrupting agent monomethylauristatin-F by a non-cleavable maleimidocaproyl linker. In this first-in-human, dose-finding trial (NCT01891669), we evaluated safety, pharmacokinetics, and preliminary antitumor activity of PF-06263507 in pretreated patients with advanced solid tumors, unselected for 5T4 expression. starting at 0.05 mg/kg, with 25, 56, and 95% dose increments, depending on observed dose-limiting toxicities (DLTs), applying a modified continual reassessment method. Results Twenty-six patients received PF-06263507 at 0.05 to 6.5 mg/kg. The first DLT, grade 3 photophobia, occurred at 4.34 mg/kg and two additional DLTs, grade 2 keratitis and grade 1 limbal stem cell deficiency (> 2-week dosing delay), at 6.5 mg/kg. The most common adverse events (AEs) were fatigue (38.5%), photophobia (26.9%), and decreased appetite, dry eye, nausea, and thrombocytopenia (23.1% each). No treatment-related grade 4-5 AEs were reported. Systemic exposure of PF-06263507 increased in a dose-related manner. At the maximum tolerated dose (MTD, 4.34 mg/kg), mean terminal half-life for PF-06263507 and unconjugated payload were ~6 and 3 days, respectively. Payload serum concentrations were substantially lower compared with PF-06263507. No objective responses were observed. Conclusions The MTD and recommended phase II dose were determined to be 4.34 mg/kg. Ocular toxicities accounted for the DLTs observed, as previously reported with monomethylauristatin-F payloads. Further studies are warranted to investigate clinical activity of this agent in patients with 5T4-expressing tumors.Trial registration ID: NCT01891669.

    Topics: Adult; Aged; Aged, 80 and over; Antibodies, Monoclonal, Humanized; Antigens, Neoplasm; Antineoplastic Agents, Immunological; Female; Humans; Immunoconjugates; Keratitis; Male; Maximum Tolerated Dose; Membrane Glycoproteins; Middle Aged; Neoplasms; Oligopeptides; Photophobia; Treatment Outcome

2017

Other Studies

4 other study(ies) available for monomethylauristatin-f and Neoplasms

ArticleYear
Antitumor activity of a 5T4 targeting antibody drug conjugate with a novel payload derived from MMAF via C-Lock linker.
    Cancer medicine, 2019, Volume: 8, Issue:4

    Antibody-drug conjugates (ADCs) belong to a promising class of biopharmaceuticals in which target-killing of tumor cells was achieved by marrying the potency of the cytotoxic payload with the tumor specificity of the antibody. Here we developed a novel ADC (ZV0508) that targets 5T4 oncofetal antigen, which is overexpressed in many carcinomas on both bulk tumor cells and cancer stem cells. A novel cytotoxic payload called Duostatin-5 (Duo-5) which was derived from monomethyl auristatin F (MMAF) was attached to a 5T4 targeting antibody (ZV05) by interchain cysteine cross-linking conjugation via a disubstituted C-Lock linker. We have investigated the antitumor efficacy of ZV0508 by in vitro and in vivo studies, and compared its antitumor activity with ZV05-mcMMAF (ZV0501), in which MMAF was linked via a conventional noncleavable maleimidocaproyl linker. As results, ZV0508 exhibited ideal antiproliferative effects through blocking cell cycle and inducing cell apoptosis. The in vivo studies revealed that both ZV0501 and ZV0508 exhibited excellent antitumor activities even at a single dose. Although ZV0508 was inferior to ZV0501 in vitro, it elicited more durable antitumor responses than ZV0501 in vivo. The superior in vivo activity of ZV0508 may be due to the combined use of the disubstituted C-Lock linker and the novel payload Duo-5, resulting in a more stable and potent ADC. Taken together, these data suggest ZV0508 is a worthy candidate for the treatment of 5T4 positive cancers.

    Topics: Animals; Antibodies, Monoclonal; Antigens, Neoplasm; Antineoplastic Agents; Apoptosis; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cross-Linking Reagents; Female; Humans; Immunoconjugates; Male; Mammary Neoplasms, Experimental; Mice, Inbred BALB C; Mice, Nude; Molecular Targeted Therapy; Neoplasms; Oligopeptides; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2019
Targeted Drug Delivery with an Integrin-Binding Knottin-Fc-MMAF Conjugate Produced by Cell-Free Protein Synthesis.
    Molecular cancer therapeutics, 2016, Volume: 15, Issue:6

    Antibody-drug conjugates (ADC) have generated significant interest as targeted therapeutics for cancer treatment, demonstrating improved clinical efficacy and safety compared with systemic chemotherapy. To extend this concept to other tumor-targeting proteins, we conjugated the tubulin inhibitor monomethyl-auristatin-F (MMAF) to 2.5F-Fc, a fusion protein composed of a human Fc domain and a cystine knot (knottin) miniprotein engineered to bind with high affinity to tumor-associated integrin receptors. The broad expression of integrins (including αvβ3, αvβ5, and α5β1) on tumor cells and their vasculature makes 2.5F-Fc an attractive tumor-targeting protein for drug delivery. We show that 2.5F-Fc can be expressed by cell-free protein synthesis, during which a non-natural amino acid was introduced into the Fc domain and subsequently used for site-specific conjugation of MMAF through a noncleavable linker. The resulting knottin-Fc-drug conjugate (KFDC), termed 2.5F-Fc-MMAF, had approximately 2 drugs attached per KFDC. 2.5F-Fc-MMAF inhibited proliferation in human glioblastoma (U87MG), ovarian (A2780), and breast (MB-468) cancer cells to a greater extent than 2.5F-Fc or MMAF alone or added in combination. As a single agent, 2.5F-Fc-MMAF was effective at inducing regression and prolonged survival in U87MG tumor xenograft models when administered at 10 mg/kg two times per week. In comparison, tumors treated with 2.5F-Fc or MMAF were nonresponsive, and treatment with a nontargeted control, CTRL-Fc-MMAF, showed a modest but not significant therapeutic effect. These studies provide proof-of-concept for further development of KFDCs as alternatives to ADCs for tumor targeting and drug delivery applications. Mol Cancer Ther; 15(6); 1291-300. ©2016 AACR.

    Topics: Animals; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cell-Free System; Cystine-Knot Miniproteins; Drug Delivery Systems; Humans; Immunoconjugates; Immunoglobulin Fc Fragments; Integrins; Mice; Neoplasms; Oligopeptides; Peptides; Protein Binding; Xenograft Model Antitumor Assays

2016
Preclinical Development of an anti-5T4 Antibody-Drug Conjugate: Pharmacokinetics in Mice, Rats, and NHP and Tumor/Tissue Distribution in Mice.
    Bioconjugate chemistry, 2015, Nov-18, Volume: 26, Issue:11

    The pharmacokinetics of an antibody (huA1)-drug (auristatin microtubule disrupting MMAF) conjugate, targeting 5T4-expressing cells, were characterized during the discovery and development phases in female nu/nu mice and cynomolgus monkeys after a single dose and in S-D rats and cynomolgus monkeys from multidose toxicity studies. Plasma/serum samples were analyzed using an ELISA-based method for antibody and conjugate (ADC) as well as for the released payload using an LC-MS/MS method. In addition, the distribution of the Ab, ADC, and released payload (cys-mcMMAF) was determined in a number of tissues (tumor, lung, liver, kidney, and heart) in two tumor mouse models (H1975 and MDA-MB-361-DYT2 models) using similar LBA and LC-MS/MS methods. Tissue distribution studies revealed preferential tumor distribution of cys-mcMMAF and its relative specificity to the 5T4 target containing tissue (tumor). Single dose studies suggests lower CL values at the higher doses in mice, although a linear relationship was seen in cynomolgus monkeys at doses from 0.3 to 10 mg/kg with no evidence of TMDD. Evaluation of DAR (drug-antibody ratio) in cynomolgus monkeys (at 3 mg/kg) indicated that at least half of the payload was still on the ADC 1 to 2 weeks after IV dosing. After multiple doses, the huA1 and conjugate data in rats and monkeys indicate that exposure (AUC) increases with increasing dose in a linear fashion. Systemic exposure (as assessed by Cmax and AUC) of the released payload increased with increasing dose, although exposure was very low and its pharmacokinetics appeared to be formation rate limited. The incidence of ADA was generally low in rats and monkeys. We will discuss cross species comparison, relationships between the Ab, ADC, and released payload exposure after multiple dosing, and insights into the distribution of this ADC with a focus on experimental design as a way to address or bypass apparent obstacles and its integration into predictive models.

    Topics: Animals; Antibodies, Monoclonal, Humanized; Cell Line, Tumor; Female; Humans; Immunoconjugates; Macaca fascicularis; Membrane Glycoproteins; Mice; Mice, Nude; Neoplasms; Oligopeptides; Rats; Rats, Sprague-Dawley; Tissue Distribution

2015
Enzymatic prenylation and oxime ligation for the synthesis of stable and homogeneous protein-drug conjugates for targeted therapy.
    Angewandte Chemie (International ed. in English), 2015, Oct-05, Volume: 54, Issue:41

    Targeted therapy based on protein-drug conjugates has attracted significant attention owing to its high efficacy and low side effects. However, efficient and stable drug conjugation to a protein binder remains a challenge. Herein, a chemoenzymatic method to generate highly stable and homogenous drug conjugates with high efficiency is presented. The approach comprises the insertion of the CaaX sequence at the C-terminal end of the protein binder, prenylation using farnesyltransferase, and drug conjugation through an oxime ligation reaction. MMAF and an EGFR-specific repebody are used as the antitumor agent and protein binder, respectively. The method enables the precisely controlled synthesis of repebody-drug conjugates with high yield and homogeneity. The utility of this approach is illustrated by the notable stability of the repebody-drug conjugates in human plasma, negligible off-target effects, and a remarkable antitumor activity in vivo. The present method can be widely used for generating highly homogeneous and stable PDCs for targeted therapy.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Drug Delivery Systems; ErbB Receptors; Farnesyltranstransferase; Humans; Mice, Nude; Models, Molecular; Neoplasms; Oligopeptides; Oximes; Protein Binding; Protein Prenylation; Proteins

2015