monomethyl-fumarate has been researched along with Inflammation* in 3 studies
3 other study(ies) available for monomethyl-fumarate and Inflammation
Article | Year |
---|---|
Experimental Investigations of Monomethyl and Dimethyl Fumarate in an Astrocyte-Microglia Co-Culture Model of Inflammation.
Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the central nervous system. Dimethyl fumarate (DMF) and monomethyl fumarate (MMF) belong to the disease-modifying drugs in treatment of MS. There is evidence that astrocytes and microglia are involved in MS pathology, but few studies are available about MMF and DMF effects on astrocytes and microglia. The aim of this study was to investigate the effects of MMF and DMF on microglial activation and morphology as well as potential effects on glial viability, Cx43, and AQP4 expressions in different set-ups of an in vitro astrocyte-microglia co-culture model of inflammation.. Primary rat glial co-cultures of astrocytes containing 5% (M5, mimicking "physiological" conditions) or 30% (M30, mimicking "pathological, inflammatory" conditions) of microglia were treated with different concentrations of MMF (0.1, 0.5, and 2 μg/mL) or DMF (1.5, 5, and 15 μM) for 24 h. Viability, proliferation, and cytotoxicity of glial cells were examined using MTT assay. Immunocytochemistry was performed to analyze the microglial phenotypes. Connexin 43 (Cx43) and aquaporin 4 (AQP4) expressions were quantified by immunoblot analysis.. Treatment with different concentrations of MMF or DMF for 24 h did not change the glial cell viability in M5 and M30 co-cultures. Microglial phenotypes were not altered by DMF under physiological M5 conditions, but treatment with higher concentration of DMF (15 μM) induced microglial activation under inflammatory M30 conditions. Incubation with different concentrations of MMF had no effects on microglial phenotypes. The Cx43 expression in M5 and M30 co-cultures was not changed significantly by immunoblot analysis after incubation with different concentrations of DMF or MMF for 24 h. The AQP4 expression was significantly increased in M5 co-cultures after incubation with 5 μm DMF. Under the other conditions, AQP4 expression was not affected by DMF or MMF.. In different set-ups of the astrocyte-microglia co-culture model of inflammation, MMF has not shown significant effects. DMF had only limited effects on microglia phenotypes and AQP4 expression. In summary, mechanisms of action of fumarates probably do not involve direct effects on microglia phenotypes as well as Cx43 and AQP4 expression. Topics: Animals; Astrocytes; Coculture Techniques; Connexin 43; Dimethyl Fumarate; Inflammation; Microglia; Rats | 2023 |
Dimethyl fumarate therapy reduces memory T cells and the CNS migration potential in patients with multiple sclerosis.
Dimethyl fumarate (DMF) is a disease-modifying therapy for patients with relapsing-remitting multiple sclerosis (RRMS). T cells are major contributors to the pathogenesis of RRMS, where they regulate the pathogenic immune response and participate in CNS lesion development.. In this study we evaluate the therapeutic effects of DMF on T cell subpopulations, their CNS migration potential and effector functions.. Blood and CSF from untreated and DMF-treated patients with RRMS and healthy donors were analyzed by flow cytometry.. DMF reduced the prevalence of circulating proinflammatory CD4+ and CD8+ memory T cells, whereas regulatory T cells were unaffected. Furthermore, DMF reduced the frequency of CD4+ T cells expressing CNS-homing markers. In coherence, we found a reduced recruitment of CD4+ but not CD8+ T cells to CSF. We also found that monomethyl fumarate dampened T cell proliferation and reduced the frequency of TNF-α, IL-17 and IFN-γ producing T cells.. DMF influences the balance between proinflammatory and regulatory T cells, presumably favoring a less proinflammatory environment. DMF also reduces the CNS migratory potential of CD4+ T cells whereas CD8+ T cells are less affected. Altogether, our study suggests an anti-inflammatory effect of DMF mainly on the CD4+ T cell compartment. Topics: Adult; Cell Proliferation; Cohort Studies; Cytokines; Dimethyl Fumarate; Female; Fumarates; Humans; Immunologic Factors; Inflammation; Male; Middle Aged; Multiple Sclerosis, Relapsing-Remitting; T-Lymphocytes; Young Adult | 2020 |
Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration.
Fumaric acid esters (FAE) have proven their therapeutic efficacy in psoriasis, a Th1 mediated skin disease. More recently, preliminary data have suggested an activity in multiple sclerosis (MS) as well. To investigate further possible mechanisms of action of these compounds in inflammatory diseases, we studied the FAE methyl hydrogen fumarate (MHF) and dimethyl fumarate (DMF) in chronic experimental autoimmune encephalomyelitis (EAE) induced by immunization of C57BL/6 mice with MOG peptide aa 35-55. Preventive treatment with these FAE was delivered twice a day by oral gavage. Both esters had a significant therapeutic effect on the disease course and histology showed a strongly reduced macrophage inflammation in the spinal cord. Multiparameter cytokine analysis from blood detected an increase of IL-10 in the treated animals. We conclude that the underlying biological activity of FAE in EAE is complex and, to elucidate the molecular mechanisms, further investigation is needed. Topics: Animals; Biomarkers; Cell Count; Cytokines; Dimethyl Fumarate; Encephalomyelitis, Autoimmune, Experimental; Female; Fumarates; Immunosuppressive Agents; Inflammation; Interleukins; Macrophages; Mice; Mice, Inbred C57BL; Spinal Cord; T-Lymphocytes | 2006 |