monomethyl-auristatin-e has been researched along with Pancreatic-Neoplasms* in 11 studies
11 other study(ies) available for monomethyl-auristatin-e and Pancreatic-Neoplasms
Article | Year |
---|---|
Therapeutic efficacy of a MMAE-based anti-DR5 drug conjugate Oba01 in preclinical models of pancreatic cancer.
Pancreatic cancer (PC) is among the most aggressive malignancies associated with a 5-year survival rate of <9%, and the treatment options remain limited. Antibody-drug conjugates (ADCs) are a new class of anticancer agents with superior efficacy and safety profiles. We studied the antitumor activity of Oba01 ADC and the mechanism underlying the targeting of death receptor 5 (DR5) in preclinical PC models. Our data revealed that DR5 was highly expressed on the plasma membrane of PC cells and Oba01 showed potent in vitro antitumor activity in a panel of human DR5-positive PC cell lines. DR5 was readily cleaved by lysosomal proteases after receptor-mediated internalization. Monomethyl auristatin E (MMAE) was then released into the cytosol to induce G2/M-phase growth arrest, cell death via apoptosis induction, and the bystander effect. Furthermore, Oba01 mediated cell death via antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. For improved potency, we investigated the synergetic effect of Oba01 in combination with approved drugs. Oba01 combined with gemcitabine showed better antiproliferative activity than either standalone treatment. In cell- and patient-derived xenografts, Oba01 showed excellent tumoricidal activity in mono- or combinational therapy. Thus, Oba01 may provide a novel biotherapeutic approach and a scientific basis for clinical trials in DR5-expressing patients with PC. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Humans; Pancreatic Neoplasms; Xenograft Model Antitumor Assays | 2023 |
hIMB1636-MMAE, a Novel TROP2-Targeting Antibody-Drug Conjugate Exerting Potent Antitumor Efficacy in Pancreatic Cancer.
Topics: Animals; Cell Line, Tumor; Humans; Immunoconjugates; Mice; Mice, Nude; Pancreatic Neoplasms; Xenograft Model Antitumor Assays | 2023 |
Light-Activated Monomethyl Auristatin E Prodrug Nanoparticles for Combinational Photo-Chemotherapy of Pancreatic Cancer.
Pancreatic cancer is a highly fatal disease that is becoming an increasingly leading cause of cancer-related deaths. In clinic, the most effective approach to treat pancreatic cancers is the combination treatment of several chemotherapeutic drugs, including fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX), but this approach is not adequate to manage patients due to their severe toxic side effects. Herein, we proposed light-activated monomethyl auristatin E (MMAE) prodrug nanoparticles for combinational photo-chemotherapy and optimized its applications for pancreatic cancer treatment. The photosensitizer (Ce6) and chemotherapeutic drug (MMAE) were conjugated through caspase-3-specific cleavable peptide (KGDEVD). The resulting CDM efficiently promoted the reactive oxygen species (ROS) under visible light irradiation and thereby induced caspase-3 overexpression in pacreatic cancers, which subsequently released the MMAE from the system. Importantly, MMAE released from CDM further amplified the activation of CDM into MMAE by inducing extensive apoptotic cell death in tumor microenvironment for treatment of tumor cells in deep in the tumor tissues as far visible light cannot reach. In addition, CDM formed prodrug nanoparticles via intermolecular π-π stacking and hydrophobic interactions, allowing durable and reliable treatment by preventing fast leakage from the pancreatic cancers via the lymphatic vessels. The CDM directly (intratumoral) injected into pancreatic cancers in orthotopic models through an invasive approach significantly delayed the tumor progression by combinational photo-chemotherapy with less toxic side effects. This study offers a promising and alternative approach for safe and more effective pancreatic cancer treatment via prodrug nanoparticles that combine photodynamic therapy and chemotherapy. Topics: Antineoplastic Combined Chemotherapy Protocols; Caspase 3; Cell Line, Tumor; Humans; Nanoparticles; Oligopeptides; Pancreatic Neoplasms; Photochemotherapy; Prodrugs; Tumor Microenvironment | 2022 |
A growth model of neuroendocrine tumor surrogates and the efficacy of a novel somatostatin-receptor-guided antibody-drug conjugate: Perspectives on clinical response?
As patient-derived xenografts and other preclinical models of neuroendocrine tumors for testing personalized therapeutics are lacking, we have developed a perfused, 3D bioreactor model to culture tumor surrogates from patient-derived neuroendocrine tumors. This work evaluates the duration of surrogate culture and surrogate response to a novel antibody-drug conjugate.. Twenty-seven patient-derived neuroendocrine tumors were cultured. Histologic sections of a pancreatic neuroendocrine tumor xenograft (BON-1) tumor were assessed for SSTR2 expression before tumor implantation into 2 bioreactors. One surrogate was treated with an antibody-drug conjugate composed of an anti-mitotic Monomethyl auristatin-E linked to a somatostatin receptor 2 antibody. Viability and therapeutic response were assessed by pre-imaging incubation with IR-783 and the RealTime-Glo AnnexinV Apoptosis and Necrosis Assay (Promega Corporation, Madison, WI) over 6 days. A primary human pancreatic neuroendocrine tumor was evaluated similarly.. Mean surrogate growth duration was 34.8 days. Treated BON-1 surrogates exhibited less proliferation (1.2 vs 1.9-fold) and greater apoptosis (1.5 vs 1.1-fold) than controls, whereas treated patient-derived neuroendocrine tumor bioreactors exhibited greater degrees of apoptosis (13- vs 9-fold) and necrosis (2.5- vs 1.6-fold).. Patient-derived neuroendocrine tumor surrogates can be cultured reliably within the bioreactor. This model can be used to evaluate the efficacy of antibody-guided chemotherapy ex vivo and may be useful for predicting clinical responses. Topics: Animals; Antineoplastic Agents, Immunological; Apoptosis; Bioreactors; Cell Proliferation; Drug Screening Assays, Antitumor; Humans; Immunoconjugates; Male; Mice; Molecular Targeted Therapy; Neuroendocrine Tumors; Oligopeptides; Pancreatic Neoplasms; Primary Cell Culture; Receptors, Somatostatin; Reproducibility of Results; Tumor Cells, Cultured | 2020 |
Therapeutic efficacy, pharmacokinetic profiles, and toxicological activities of humanized antibody-drug conjugate Zt/g4-MMAE targeting RON receptor tyrosine kinase for cancer therapy.
Aberrant expression of the RON receptor tyrosine kinase is a pathogenic feature and a validated drug target in various types of cancers. Currently, therapeutic antibodies targeting RON for cancer therapy are under intensive evaluation. Here we report the development and validation of a novel humanized anti-RON antibody-drug conjugate for cancer therapy.. Antibody humanization was achieved by grafting sequences of complementarity-determining regions from mouse monoclonal antibody Zt/g4 into human IgG1/κ acceptor frameworks. The selected humanized Zt/g4 subclone H1L3 was conjugated with monomethyl auristatin E using a dipeptide linker to form H-Zt/g4-MMAE. Pharmacokinetic analysis of H-Zt/g4-MMAE was determined using hydrophobic interaction chromatography and a MMAE ADC ELISA kit. Biochemical and biological assays were used for measuring RON expression, internalization, cell viability and death. Therapeutic efficacies of H-Zt/g4-MMAE were validated in vivo using three pancreatic cancer xenograft models. Toxicological activities of H-Zt/g4-MMAE were determined in mouse and cynomolgus monkey.. H-Zt/g4-MMAE is superior in eradication of pancreatic cancer xenografts with favorable pharmacokinetic profiles and manageable toxicological activities. These findings warrant the transition of H-Zt/g4-MMAE into clinical trials in the future. Topics: Animals; Antibodies, Monoclonal, Humanized; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Proliferation; Cell Survival; Female; Gene Expression Regulation, Neoplastic; HCT116 Cells; HT29 Cells; Humans; Immunoconjugates; Macaca fascicularis; Mice; NIH 3T3 Cells; Oligopeptides; Pancreatic Neoplasms; Receptor Protein-Tyrosine Kinases; Xenograft Model Antitumor Assays | 2019 |
An auristatin-based antibody-drug conjugate targeting HER3 enhances the radiation response in pancreatic cancer.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by poor response to chemotherapy and radiotherapy due to the lack of efficient therapeutic tools and early diagnostic markers. We previously generated the nonligand competing anti-HER3 antibody 9F7-F11 that binds to pancreatic tumor cells and induces tumor regression in vivo in experimental models. Here, we asked whether coupling 9F7-F11 with a radiosensitizer, such as monomethylauristatin E (MMAE), by using the antibody-drug conjugate (ADC) technology could improve radiation therapy efficacy in PDAC. We found that the MMAE-based HER3 antibody-drug conjugate (HER3-ADC) was efficiently internalized in tumor cells, increased the fraction of cells arrested in G2/M, which is the most radiosensitive phase of the cell cycle, and promoted programmed cell death of irradiated HER3-positive pancreatic cancer cells (BxPC3 and HPAC cell lines). HER3-ADC decreased the clonogenic survival of irradiated cells by increasing DNA double-strand break formation (based on γH2AX level), and by modulating DNA damage repair. Tumor radiosensitization with HER3-ADC favored the inhibition of the AKT-induced survival pathway, together with more efficient caspase 3/PARP-mediated apoptosis. Incubation with HER3-ADC before irradiation synergistically reduced the phosphorylation of STAT3, which is involved in chemoradiation resistance. In vivo, the combination of HER3-ADC with radiation therapy increased the overall survival of mice harboring BxPC3, HPAC cell xenografts or patient-derived xenografts, and reduced proliferation (KI67-positive cells). Combining auristatin radiosensitizer delivery via an HER3-ADC with radiotherapy is a new promising therapeutic strategy in PDAC. Topics: Animals; Antibodies, Monoclonal, Murine-Derived; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chemoradiotherapy; Humans; Immunoconjugates; Immunologic Factors; Mice; Oligopeptides; Pancreatic Neoplasms; Phosphorylation; STAT3 Transcription Factor; Treatment Outcome; Xenograft Model Antitumor Assays | 2019 |
Preclinical Efficacy of Anti-RON Antibody-Drug Conjugate Zt/g4-MMAE for Targeted Therapy of Pancreatic Cancer Overexpressing RON Receptor Tyrosine Kinase.
Aberrant expression of the RON receptor tyrosine kinase, a cell surface protein, is a pathogenic feature in pancreatic cancer, which renders it a drug target for targeted therapy. Nevertheless, development of therapeutics targeting RON for pancreatic cancer therapy is hampered due to the lack of full addiction by pancreatic cancer cells to RON signaling for growth and survival. Here we describe a novel strategy using anti-RON antibody-directed drug delivery in the form of an antibody-drug conjugate for inhibition and/or eradication of pancreatic cancers. Monoclonal antibody Zt/g4 specific to the RON Sema domain was selected as the drug carrier based on its ability to induce robust RON internalization. Conjugation of Zt/g4 with monomethyl auristatin E, designated as Zt/g4-MMAE, was achieved through a protease-sensitive dipeptide linker to reach a drug to antibody ratio of 3.29:1. Zt/g4-MMAE was stable in human plasma with a dissociation rate less than 4% within a 10 day period. In vitro, Zt/g4-MMAE rapidly induced RON internalization, resulting in cell cycle arrest followed by massive cell death. The maximal effect was seen in pancreatic cancer cells with more than 10 000 receptor molecules per cell. Zt/g4-MMAE also synergized in vitro with chemotherapeutics including gemcitabine, 5-fluorouracil, and oxaliplatin to further reduce PDAC cell viability. In vivo, Zt/g4-MMAE exerts a long-lasting activity, which not only inhibited but also eradicated pancreatic xenograft tumors. These finding indicate that Zt/g4-directed drug delivery is highly effective for eradicating pancreatic tumors. Thus, Zt/g4-MMAE is a novel biotherapeutic with potential for therapy of RON-expressing pancreatic malignancies. Topics: Animals; Antibodies, Monoclonal; Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Cell Survival; Deoxycytidine; Drug Carriers; Drug Synergism; Female; Fluorouracil; Gemcitabine; Humans; Immunoconjugates; Mice; Mice, Nude; Oligopeptides; Oxaliplatin; Pancreatic Neoplasms; Receptor Protein-Tyrosine Kinases; Xenograft Model Antitumor Assays | 2018 |
Tumor radiosensitization by monomethyl auristatin E: mechanism of action and targeted delivery.
Intrinsic tumor resistance to radiotherapy limits the efficacy of ionizing radiation (IR). Sensitizing cancer cells specifically to IR would improve tumor control and decrease normal tissue toxicity. The development of tumor-targeting technologies allows for developing potent radiosensitizing drugs. We hypothesized that the anti-tubulin agent monomethyl auristatin E (MMAE), a component of a clinically approved antibody-directed conjugate, could function as a potent radiosensitizer and be selectively delivered to tumors using an activatable cell-penetrating peptide targeting matrix metalloproteinases and RGD-binding integrins (ACPP-cRGD-MMAE). We evaluated the ability of MMAE to radiosensitize both established cancer cells and a low-passage cultured human pancreatic tumor cell line using clonogenic and DNA damage assays. MMAE sensitized colorectal and pancreatic cancer cells to IR in a schedule- and dose-dependent manner, correlating with mitotic arrest. Radiosensitization was evidenced by decreased clonogenic survival and increased DNA double-strand breaks in irradiated cells treated with MMAE. MMAE in combination with IR resulted in increased DNA damage signaling and activation of CHK1. To test a therapeutic strategy of MMAE and IR, PANC-1 or HCT-116 murine tumor xenografts were treated with nontargeted free MMAE or tumor-targeted MMAE (ACPP-cRGD-MMAE). While free MMAE in combination with IR resulted in tumor growth delay, tumor-targeted ACPP-cRGD-MMAE with IR produced a more robust and significantly prolonged tumor regression in xenograft models. Our studies identify MMAE as a potent radiosensitizer. Importantly, MMAE radiosensitization can be localized to tumors by targeted activatable cell-penetrating peptides. Topics: Animals; Antineoplastic Agents; Cell Survival; Cell-Penetrating Peptides; Chemoradiotherapy; Colorectal Neoplasms; DNA Breaks, Double-Stranded; Drug Delivery Systems; Female; HCT116 Cells; Humans; Mice; Mice, Nude; Oligopeptides; Pancreatic Neoplasms; Radiation Tolerance; Radiation-Sensitizing Agents; Tumor Burden; Xenograft Model Antitumor Assays | 2015 |
Antitumor effect of antitissue factor antibody-MMAE conjugate in human pancreatic tumor xenografts.
Tissue factor (TF) triggers the extrinsic blood coagulation cascade and is highly expressed in various types of cancer. In this study, we investigated the antitumor effect of an antibody-drug conjugate (ADC) consisting of an anti-TF monoclonal antibody and monomethyl auristatin E (MMAE). MMAE was conjugated to an anti-human TF or anti-mouse TF antibody using a valine-citrulline linker that could be potentially hydrolyzed by cathepsin B in the acidic environment of the lysosome. The cytotoxic and antitumor effects of the ADCs against four pancreatic cancer cell lines were analyzed. Both the ADC with the anti-human TF antibody and that with the anti-mouse TF antibody were stable under physiological conditions. The anti-human ADC was internalized in TF-expressing human tumor cell lines, followed by effective MMAE release. The half maximal inhibitory concentration (IC50 ) of MMAE was approximately 1 nM for all of the cell lines used. Meanwhile, the IC50 of anti-human ADC was 1.15 nM in the cell lines showing high TF expression, while exceeding 100 nM in the cells showing low TF expression levels. Anti-human ADC with passive and active targeting ability exerted significant suppression of tumor growth as compared to that observed in the saline group (p < 0.01). Also significant tumor growth suppressions were seen at the anti-mouse ADC and control ADC groups compared to the saline group (p < 0.01) due to EPR effect. Because various clinical human cancers express highly amount of TF, this new anti-TF ADC may deserve a clinical evaluation. Topics: Animals; Antibodies, Monoclonal; Antineoplastic Agents; Cell Line, Tumor; Female; Humans; Immunoconjugates; Mice; Mice, Inbred BALB C; Mice, Nude; Oligopeptides; Pancreatic Neoplasms; Thromboplastin; Xenograft Model Antitumor Assays | 2015 |
An antimesothelin-monomethyl auristatin e conjugate with potent antitumor activity in ovarian, pancreatic, and mesothelioma models.
Mesothelin (MSLN) is an attractive target for antibody-drug conjugate therapy because it is highly expressed in various epithelial cancers, with normal expression limited to nondividing mesothelia. We generated novel antimesothelin antibodies and conjugated an internalizing one (7D9) to the microtubule-disrupting drugs monomethyl auristatin E (MMAE) and MMAF, finding the most effective to be MMAE with a lysosomal protease-cleavable valine-citrulline linker. The humanized (h7D9.v3) version, αMSLN-MMAE, specifically targeted mesothelin-expressing cells and inhibited their proliferation with an IC50 of 0.3 nmol/L. Because the antitumor activity of an antimesothelin immunotoxin (SS1P) in transfected mesothelin models did not translate to the clinic, we carefully selected in vivo efficacy models endogenously expressing clinically relevant levels of mesothelin, after scoring mesothelin levels in ovarian, pancreatic, and mesothelioma tumors by immunohistochemistry. We found that endogenous mesothelin in cancer cells is upregulated in vivo and identified two suitable xenograft models for each of these three indications. A single dose of αMSLN-MMAE profoundly inhibited or regressed tumor growth in a dose-dependent manner in all six models, including two patient-derived tumor xenografts. The robust and durable efficacy of αMSLN-MMAE in preclinical models of ovarian, mesothelioma, and pancreatic cancers justifies the ongoing phase I clinical trial. Topics: Animals; Female; GPI-Linked Proteins; Humans; Immunohistochemistry; Immunotoxins; Mesothelin; Mesothelioma; Mice; Oligopeptides; Ovarian Neoplasms; Pancreatic Neoplasms; Random Allocation; Transfection; Xenograft Model Antitumor Assays | 2014 |
Antibody-drug conjugate may inhibit pancreatic cancer.
Topics: Antibodies, Monoclonal; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Clinical Trials as Topic; Guanylate Cyclase; Humans; Oligopeptides; Pancreatic Neoplasms | 2013 |