monensin has been researched along with Choriocarcinoma* in 2 studies
2 other study(ies) available for monensin and Choriocarcinoma
Article | Year |
---|---|
Iron metabolism in BeWo chorion carcinoma cells. Transferrin-mediated uptake and release of iron.
Growing human choriocarcinoma BeWo b24 cells contain 1.5 X 10(6) functional cell surface transferrin binding sites and 2.0 X 10(6) intracellular binding sites. These cells rapidly accumulate iron at a rate of 360,000 iron atoms/min/cell. During iron uptake the transferrin and its receptor recycle at least each 19 min. The accumulated iron is released from the BeWo cells at a considerable rate. The time required to release 50% of previously accumulated iron into the extracellular medium is 30 h. This release process is cell line-specific as HeLa cells release very little if any iron. The release of iron by BeWo cells is stimulated by exogenous chelators such as apotransferrin, diethylenetriaminepenta-acetic acid, desferral, and apolactoferrin. The time required to release 50% of the previously accumulated iron into medium supplemented with chelator is 15 h. In the absence of added chelators iron is released as a low molecular weight complex, whereas in the presence of chelator the iron is found complexed to the chelator. Uptake of iron is inhibited by 250 microM primaquine or 2.5 microM monensin. However, the release of iron is not inhibited by these drugs. Intracellular iron is stored bound to ferritin. A model for the release of iron by BeWo cells and its implication for transplacental iron transport is discussed. Topics: Cell Line; Choriocarcinoma; Endocytosis; Female; Humans; Iron; Kinetics; Monensin; Pregnancy; Primaquine; Receptors, Transferrin; Transferrin; Uterine Neoplasms | 1987 |
The effect of carbonyl cyanide trifluoromethoxyphenylhydrazone and methylamine on the processing and secretion of the glycoprotein hormone chorionic gonadotropin by human choriocarcinoma cells.
Carbonyl cyanide trifluoromethoxyphenylhydrazone (FCCP), a protonophore, and methylamine, a weak base, agents that dissipate hydrogen gradients across cellular membranes, were used to probe the coupling of hydrogen gradients to the processing and secretion of the glycoprotein hormone hCG by human choriocarcinoma cells (JAR) in culture. Both drugs disrupted the processing of asparagine-linked oligosaccharides such that the secreted hCG forms contained mostly high mannose rather than complex oligosaccharide chains. As the concentrations of FCCP were increased above 1 microgram/ml and those of methylamine above 12.5 mg/ml, the secretion of the labeled hCG dimer and free alpha-subunit was progressively inhibited. Both FCCP and methylamine also inhibited the incorporation of [35S] methionine and [3H]mannose into hCG subunits. Nevertheless, the inhibition of secretion was clearly apparent as an intracellular accumulation of the hCG subunit precursors in spite of the diminished incorporation of radioactive substrates. The intracellular hCG precursors that accumulated in the drug-treated cells contained predominantly Man8-9GlcNAc2 units, structures characteristic of glycoproteins localized in the endoplasmic reticulum. Both FCCP and methylamine inhibited hCG secretion at concentrations that did not lower the cellular content of ATP. We postulate on the basis of these results that a hydrogen gradient across the membrane either of the rough endoplasmic reticulum or the transitional vesicle is coupled to the rough endoplasmic reticulum to Golgi translocation step such that dissipation of the proton gradient blocks the secretion of hCG. Topics: Adenosine Triphosphate; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cell Line; Choriocarcinoma; Chorionic Gonadotropin; Female; Humans; Methylamines; Monensin; Nitriles; Oligosaccharides; Oxygen Consumption; Pregnancy; Protein Processing, Post-Translational | 1986 |