molybdenum-cofactor has been researched along with Disease-Models--Animal* in 4 studies
4 other study(ies) available for molybdenum-cofactor and Disease-Models--Animal
Article | Year |
---|---|
Whole transcriptomic and proteomic analyses of an isogenic M. tuberculosis clinical strain with a naturally occurring 15 Kb genomic deletion.
Tuberculosis remains one of the most difficult to control infectious diseases in the world. Many different factors contribute to the complexity of this disease. These include the ability of the host to control the infection which may directly relate to nutritional status, presence of co-morbidities and genetic predisposition. Pathogen factors, in particular the ability of different Mycobacterium tuberculosis strains to respond to the harsh environment of the host granuloma, which includes low oxygen and nutrient availability and the presence of damaging radical oxygen and nitrogen species, also play an important role in the success of different strains to cause disease. In this study we evaluated the impact of a naturally occurring 12 gene 15 Kb genomic deletion on the physiology and virulence of M. tuberculosis. The strains denominated ON-A WT (wild type) and ON-A NM (natural mutant) were isolated from a previously reported TB outbreak in an inner city under-housed population in Toronto, Canada. Here we subjected these isogenic strains to transcriptomic (via RNA-seq) and proteomic analyses and identified several gene clusters with differential expression in the natural mutant, including the DosR regulon and the molybdenum cofactor biosynthesis genes, both of which were found in lower abundance in the natural mutant. We also demonstrated lesser virulence of the natural mutant in the guinea pig animal model. Overall, our findings suggest that the ON-A natural mutant is less fit to cause disease, but nevertheless has the potential to cause extended transmission in at-risk populations. Topics: Animals; Bacterial Proteins; Coenzymes; Disease Models, Animal; DNA-Binding Proteins; Gene Deletion; Gene Expression Profiling; Genome, Bacterial; Guinea Pigs; Humans; Lipid Metabolism; Metalloproteins; Molybdenum Cofactors; Multigene Family; Mycobacterium tuberculosis; Protein Kinases; Proteomics; Pteridines; Regulon; Tuberculosis, Pulmonary; Virulence | 2017 |
Mouse model for molybdenum cofactor deficiency type B recapitulates the phenotype observed in molybdenum cofactor deficient patients.
Molybdenum cofactor (MoCo) deficiency is a rare, autosomal-recessive disorder, mainly caused by mutations in MOCS1 (MoCo deficiency type A) or MOCS2 (MoCo deficiency type B) genes; the absence of active MoCo results in a deficiency in all MoCo-dependent enzymes. Patients with MoCo deficiency present with neonatal seizures, feeding difficulties, severe developmental delay, brain atrophy and early childhood death. Although substitution therapy with cyclic pyranopterin monophosphate (cPMP) has been successfully used in both Mocs1 knockout mice and in patients with MoCo deficiency type A, there is currently no Mocs2 knockout mouse and no curative therapy for patients with MoCo deficiency type B. Therefore, we generated and characterized a Mocs2-null mouse model of MoCo deficiency type B. Expression analyses of Mocs2 revealed a ubiquitous expression pattern; however, at the cellular level, specific cells show prominent Mocs2 expression, e.g., neuronal cells in cortex, hippocampus and brainstem. Phenotypic analyses demonstrated that Mocs2 knockout mice failed to thrive and died within 11 days after birth. None of the tested MoCo-dependent enzymes were active in Mocs2-deficient mice, leading to elevated concentrations of purines, such as hypoxanthine and xanthine, and non-detectable levels of uric acid in the serum and urine. Moreover, elevated concentrations of S-sulfocysteine were measured in the serum and urine. Increased levels of xanthine resulted in bladder and kidney stone formation, whereas increased concentrations of toxic sulfite triggered neuronal apoptosis. In conclusion, Mocs2-deficient mice recapitulate the severe phenotype observed in humans and can now serve as a model for preclinical therapeutic approaches for MoCo deficiency type B. Topics: Animals; Apoptosis; Carbon-Carbon Lyases; Coenzymes; Cysteine; Disease Models, Animal; Gene Expression; Humans; Hypoxanthine; Metal Metabolism, Inborn Errors; Metalloproteins; Mice; Mice, Knockout; Molybdenum Cofactors; Mutation; Nuclear Proteins; Phenotype; Pteridines; Xanthine | 2016 |
The pathogenesis of molybdenum cofactor deficiency, its delay by maternal clearance, and its expression pattern in microarray analysis.
Molybdenum cofactor (Moco)-deficiency is a lethal autosomal recessive disease, for which until now no effective therapy is available. The biochemical hallmark of this disorder is the inactivity of the Moco-dependent sulfite oxidase, which results in elevated sulfite and diminished sulfate levels throughout the organism. In humans, Moco-deficiency results in neurological damage, which is apparent in untreatable seizures and various brain dysmorphisms. We have recently described a murine model for Moco-deficiency, which reflects all enzyme and metabolite changes observed in the patients, and an efficient therapy using a biosynthetic precursor of Moco has been established in this animal model. We now analyzed these mice in detail and excluded morphological brain damage, while expression analysis with microarrays indicates a massive cell death program. This neuronal damage appears to be triggered by elevated sulfite levels and is ameliorated in affected embryos by maternal clearance. Topics: Animals; Brain; Carbon-Carbon Lyases; Cluster Analysis; Coenzymes; Disease Models, Animal; DNA, Complementary; Genotype; Humans; Metabolic Clearance Rate; Metalloproteins; Mice; Mice, Knockout; Molybdenum Cofactors; Myelin Sheath; Nuclear Proteins; Phenotype; Pteridines; RNA; Transcription, Genetic | 2005 |
Molybdenum cofactor-deficient mice resemble the phenotype of human patients.
Human molybdenum cofactor deficiency is a rare and devastating autosomal-recessive disease for which no therapy is known. The absence of active sulfite oxidase-a molybdenum cofactor-dependent enzyme-results in neonatal seizures and early childhood death. Most patients harbor mutations in the MOCS1 gene, whose murine homolog was disrupted by homologous recombination with a targeting vector. As in humans, heterozygous mice display no symptoms, but homozygous animals die between days 1 and 11 after birth. Biochemical analyis of these animals shows that molydopterin and active cofactor are undetectable. They do not possess any sulfite oxidase or xanthine dehydrogenase activity. No organ abnormalities were observed and the synaptic localization of inhibitory receptors, which was found to be disturbed in molybdenum cofactor deficient-mice with a Gephyrin mutation, appears normal. MOCS1(-/-) mice could be a suitable animal model for biochemical and/or genetic therapy approaches. Topics: Animals; Carbon-Carbon Lyases; Coenzymes; Disease Models, Animal; Humans; Metalloproteins; Mice; Mice, Transgenic; Molybdenum Cofactors; Nuclear Proteins; Pteridines; Sulfites; Uric Acid; Xanthine; Xanthine Dehydrogenase | 2002 |