mln-8237 and Lung-Neoplasms

mln-8237 has been researched along with Lung-Neoplasms* in 8 studies

Reviews

1 review(s) available for mln-8237 and Lung-Neoplasms

ArticleYear
Targeting DNA damage in SCLC.
    Lung cancer (Amsterdam, Netherlands), 2017, Volume: 114

    SCLC accounts for 15% of lung cancer worldwide. Characterised by early dissemination and rapid development of chemo-resistant disease, less than 5% of patients survive 5 years. Despite 3 decades of clinical trials there has been no change to the standard platinum and etoposide regimen for first line treatment developed in the 1970's. The exceptionally high number of genomic aberrations observed in SCLC combined with the characteristic rapid cellular proliferation results in accumulation of DNA damage and genomic instability. To flourish in this precarious genomic context, SCLC cells are reliant on functional DNA damage repair pathways and cell cycle checkpoints. Current cytotoxic drugs and radiotherapy treatments for SCLC have long been known to act by induction of DNA damage and the response of cancer cells to such damage determines treatment efficacy. Recent years have witnessed improved understanding of strategies to exploit DNA damage and repair mechanisms in order to increase treatment efficacy. This review will summarise the rationale to target DNA damage response in SCLC, the progress made in evaluating novel DDR inhibitors and highlight various ongoing challenges for their clinical development in this disease.

    Topics: Aurora Kinases; Azepines; Benzimidazoles; Carbolines; Cell Cycle Checkpoints; Cell Proliferation; Cytotoxins; DNA Damage; DNA Repair; Etoposide; Genomic Instability; Heterocyclic Compounds, 4 or More Rings; Humans; Lung Neoplasms; Molecular Targeted Therapy; Phthalazines; Piperazines; Poly(ADP-ribose) Polymerase Inhibitors; Protein Kinase Inhibitors; Pyrimidines; Rad51 Recombinase; Small Cell Lung Carcinoma

2017

Trials

1 trial(s) available for mln-8237 and Lung-Neoplasms

ArticleYear
Randomized Phase II Study of Paclitaxel plus Alisertib versus Paclitaxel plus Placebo as Second-Line Therapy for SCLC: Primary and Correlative Biomarker Analyses.
    Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 2020, Volume: 15, Issue:2

    We assessed the Aurora A kinase inhibitor, alisertib, plus paclitaxel (henceforth referred to as alisertib/paclitaxel) as second-line treatment for SCLC.. In this double-blind study, patients with relapsed or refractory SCLC were stratified by relapse type (sensitive versus resistant or refractory) and brain metastases and randomized 1:1 to alisertib/paclitaxel or placebo plus paclitaxel (henceforth referred to as placebo/paclitaxel) in 28-day cycles. The primary end point was progression-free survival (PFS). Associations of c-Myc expression in tumor tissue (prespecified) and genetic alterations in circulating tumor DNA (retrospective) with clinical outcome were evaluated.. A total of 178 patients were enrolled (89 in each arm). The median PFS was 3.32 months with alisertib/paclitaxel versus 2.17 months with placebo/paclitaxel (hazard ratio [HR] = 0.77, 95% confidence limit [CI]: 0.557-1.067, p = 0.113 in the intent-to-treat population versus HR = 0.71, 95% CI: 0.509-0.985, p = 0.038 with corrected analysis applied). Among 140 patients with genetic alternations, patients with cell cycle regulator mutations (cyclin-dependent kinase 6 gene [CDK6], retinoblastoma-like 1 gene [RBL1], retinoblastoma-like 2 gene [RBL2], and retinoblastoma 1 gene [RB1]) had significantly improved PFS with alisertib/paclitaxel versus with placebo/paclitaxel (3.68 versus 1.80 months, respectively [HR = 0.395, 95% CI: 0.239-0.654, p = 0.0003]), and overall survival (7.20 versus 4.47 months, respectively [HR = 0.427, 95% CI: 0.259-0.704, p = 0.00085]). A subset of patients with c-Myc expression showed significantly improved PFS with alisertib/paclitaxel. The incidence of grade 3 or higher drug-related adverse events was 67% (58 patients) with alisertib/paclitaxel versus 22% (25 patients) with placebo/paclitaxel. Twelve patients (14%) versus 11 (12%) died on study, including four versus zero treatment-related deaths.. Efficacy signals were seen with alisertib/paclitaxel in relapsed or refractory SCLC. c-Myc expression and mutations in cell cycle regulators may be potential predictive biomarkers of alisertib efficacy; further prospective validations are warranted.

    Topics: Antineoplastic Combined Chemotherapy Protocols; Azepines; Biomarkers; Disease-Free Survival; Double-Blind Method; Humans; Lung Neoplasms; Neoplasm Recurrence, Local; Paclitaxel; Pyrimidines; Retrospective Studies; Treatment Outcome

2020

Other Studies

6 other study(ies) available for mln-8237 and Lung-Neoplasms

ArticleYear
Discovery and Synthesis of a Pyrimidine-Based Aurora Kinase Inhibitor to Reduce Levels of MYC Oncoproteins.
    Journal of medicinal chemistry, 2021, 06-10, Volume: 64, Issue:11

    The A-type Aurora kinase is upregulated in many human cancers, and it stabilizes MYC-family oncoproteins, which have long been considered an undruggable target. Here, we describe the design and synthesis of a series of pyrimidine-based derivatives able to inhibit Aurora A kinase activity and reduce levels of cMYC and MYCN. Through structure-based drug design of a small molecule that induces the DFG-out conformation of Aurora A kinase, lead compound

    Topics: Animals; Aurora Kinase A; Aurora Kinase B; Binding Sites; Cell Proliferation; Down-Regulation; Drug Design; Drug Evaluation, Preclinical; Humans; Lung Neoplasms; Male; Mice; Mice, Inbred ICR; Molecular Docking Simulation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-myc; Pyrimidines; Small Cell Lung Carcinoma; Structure-Activity Relationship; Xenograft Model Antitumor Assays

2021
Alisertib inhibits migration and invasion of EGFR-TKI resistant cells by partially reversing the epithelial-mesenchymal transition.
    Biochimica et biophysica acta. Molecular cell research, 2021, Volume: 1868, Issue:6

    Epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been widely used in the clinical treatment of non-small cell lung cancer (NSCLC) patients with EGFR mutations. Previous studies have shown that Aurora kinase A (AURKA) is overexpressed in a broad spectrum of cancer cells, which can induce epithelial-mesenchymal transition (EMT) and contribute to the occurrence of acquired EGFR-TKI resistance. However, whether the inhibition of AURKA could overcome EGFR-TKI resistance or reverse the EMT in TKI-resistant NSCLC cells remains unclear. In the current study, we established three EGFR-TKI-resistant cell lines and analyzed their expression profiles by RNA sequencing. The results revealed that the EMT pathway is significantly upregulated in the three cell lines with EGFR-TKI resistance. The phosphorylation of AURKA at Thr 288 was also upregulated, suggesting that the activation of AURKA plays an important role in the occurrence of EGFR-TKI resistance. Interestingly, the AURKA inhibitor, alisertib treatment restored the susceptibility of resistant cells to EGFR-TKIs and partially reversed the EMT process, thereby reducing migration and invasion in EGFR-TKI-resistant cells. This study provides evidence that targeting AURKA signaling pathway by alisertib may be a novel approach for overcoming EGFR-TKI resistance and for the treatment of metastatic EGFR-TKIs in NSCLC patients.

    Topics: Aurora Kinase A; Azepines; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Movement; Drug Resistance, Neoplasm; Epithelial-Mesenchymal Transition; ErbB Receptors; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Mutation; Phosphorylation; Protein Kinase Inhibitors; Pyrimidines; Sequence Analysis, RNA; Up-Regulation

2021
Inhibition of Aurora A enhances radiosensitivity in selected lung cancer cell lines.
    Respiratory research, 2019, Oct-23, Volume: 20, Issue:1

    In mammalian cells, Aurora serine/threonine kinases (Aurora A, B, and C) are expressed in a cell cycle-dependent fashion as key mitotic regulators required for the maintenance of chromosomal stability. Aurora-A (AURKA) has been proven to be an oncogene in a variety of cancers; however, whether its expression relates to patient survival and the association with radiotherapy remains unclear in non-small cell lung cancer (NSCLC).. Here, we first analyzed AURKA expression in 63 NSCLC tumor samples by immunohistochemistry (IHC) and used an MTS assay to compare cell survival by targeting AURKA with MLN8237 (Alisertib) in H460 and HCC2429 (P53-competent), and H1299 (P53-deficient) cell lines. The radiosensitivity of MLN8237 was further evaluated by clonogenic assay. Finally, we examined the effect of combining radiation and AURKA inhibition in vivo with a xenograft model and explored the potential mechanism.. We found that increased AURKA expression correlated with decreased time to progression and overall survival (p = 0.0447 and 0.0096, respectively). AURKA inhibition using 100 nM MLN8237 for 48 h decreases cell growth in a partially P53-dependent manner, and the survival rates of H460, HCC2429, and H1299 cells were 56, 50, and 77%, respectively. In addition, the survival of H1299 cells decreased 27% after ectopic restoration of P53 expression, and the radiotherapy enhancement was also influenced by P53 expression (DER H460 = 1.33; HCC2429 = 1.35; H1299 = 1.02). Furthermore, tumor growth of H460 was delayed significantly in a subcutaneous mouse model exposed to both MLN8237 and radiation.. Taken together, our results confirmed that the expression of AURKA correlated with decreased NSCLC patient survival, and it might be a promising inhibition target when combined with radiotherapy, especially for P53-competent lung cancer cells. Modulation of P53 function could provide a new option for reversing cell resistance to the AURKA inhibitor MLN8237, which deserves further investigation.

    Topics: Animals; Aurora Kinase A; Azepines; Biomarkers, Tumor; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Female; Humans; Lung Neoplasms; Mice; Mice, Nude; Pyrimidines; Radiation Tolerance; Retrospective Studies; Xenograft Model Antitumor Assays

2019
The target landscape of clinical kinase drugs.
    Science (New York, N.Y.), 2017, 12-01, Volume: 358, Issue:6367

    Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays

2017
Biology and evolution of poorly differentiated neuroendocrine tumors.
    Nature medicine, 2017, Jun-06, Volume: 23, Issue:6

    Neuroendocrine (NE) cancers are a diverse group of neoplasms typically diagnosed and treated on the basis of their site of origin. This Perspective focuses on advances in our understanding of the tumorigenesis and treatment of poorly differentiated neuroendocrine tumors. Recent evidence from sequencing indicates that, although neuroendocrine tumors can arise de novo, they can also develop as a result of lineage plasticity in response to pressure from targeted therapies. We discuss the shared genomic alterations of these tumors independently of their site of origin, and we explore potential therapeutic strategies on the basis of recent biological findings.

    Topics: Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Azepines; Benzodiazepines; Carcinogenesis; Carcinoma, Neuroendocrine; Carcinoma, Small Cell; Cell Differentiation; Cell Lineage; Cell Plasticity; Colonic Neoplasms; Disease Progression; Epigenesis, Genetic; Esophageal Neoplasms; Female; Head and Neck Neoplasms; Humans; Lung Neoplasms; Male; Molecular Targeted Therapy; Neoplasms, Glandular and Epithelial; Neuroendocrine Tumors; Ovarian Neoplasms; Prostatic Neoplasms; Proto-Oncogene Proteins c-met; Proto-Oncogene Proteins c-myc; Pyrimidines; Retinoblastoma Binding Proteins; Triazoles; Tumor Suppressor Protein p53; Ubiquitin-Protein Ligases; Urinary Bladder Neoplasms; Uterine Cervical Neoplasms

2017
Inhibition of the Aurora A kinase augments the anti-tumor efficacy of oncolytic measles virotherapy.
    Cancer gene therapy, 2015, Volume: 22, Issue:9

    Oncolytic measles virus (MV) strains have demonstrated broad spectrum preclinical anti-tumor efficacy, including breast cancer. Aurora A kinase controls mitotic spindle formation and has a critical role in malignant transformation. We hypothesized that the Aurora A kinase inhibitor MLN8237 (alisertib) can increase MV oncolytic effect and efficacy by causing mitotic arrest. Alisertib enhanced MV oncolysis in vitro and significantly improved outcome in vivo against breast cancer xenografts. In a disseminated MDA-231-lu-P4 lung metastatic model, the MV/alisertib combination treatment markedly increased median survival to 82.5 days with 20% of the animals being long-term survivors versus 48 days median survival for the control animals. Similarly, in a pleural effusion model of advanced breast cancer, the MV/alisertib combination significantly improved outcome with a 74.5 day median survival versus the single agent groups (57 and 40 days, respectively). Increased viral gene expression and IL-24 upregulation were demonstrated, representing possible mechanisms for the observed increase in anti-tumor effect. Inhibiting Aurora A kinase with alisertib represents a novel approach to enhance MV-mediated oncolysis and antitumor effect. Both oncolytic MV strains and alisertib are currently tested in clinical trials, this study therefore provides the basis for translational applications of this combinatorial strategy in the treatment of patients with advanced breast cancer.

    Topics: Adenocarcinoma; Animals; Antineoplastic Agents; Aurora Kinase B; Azepines; Bacterial Proteins; Breast Neoplasms; Chlorocebus aethiops; Combined Modality Therapy; Female; Gene Expression Regulation; Humans; Immunoglobulin lambda-Chains; Interleukins; Lung Neoplasms; Measles virus; Mice; Mice, Nude; Oncolytic Virotherapy; Protein Kinase Inhibitors; Pyrimidines; Transgenes; Vero Cells; Xenograft Model Antitumor Assays

2015