mln-8237 has been researched along with Carcinoma--Ovarian-Epithelial* in 3 studies
1 review(s) available for mln-8237 and Carcinoma--Ovarian-Epithelial
Article | Year |
---|---|
Prise en charge médicale de la récidive du cancer épithélial de l'ovaire: Medical management of recurrent epithelial ovarian cancer.
The panel of therapeutic options available for medical treatment of relapsed ovarian cancer increased over the last years. In late, platinum-sensitive relapse, standard treatment remains platinum-based polychemotherapy. The choice between bevacizumab added to chemotherapy followed by maintenance and inhibitors of poly-(ADP-riboses) polymerases (PARPi) after response to platinum-based therapy should be discussed, taking into account prior treatment, contraindications, and disease characteristics (biology, symptoms…). The addition of bevacizumab at first platinum-sensitive relapse can be considered if it has not been administered in first line, and it is optional (rechallenge) if previously administered (but without Marketing Authorization in this setting). PARPi are indicated for maintenance therapy after response to platinum-based chemotherapy (whatever the treatment line), regardless of BRCA mutational status, in case of no prior administration. Early relapses are associated with poor prognosis and therapeutic options are more limited. They are treated by monochemotherapy without platinum agents, associated with bevacizumab if not administered previously. Beyond first early relapse, there is no standard and inclusion in a clinical trial should be proposed if possible. Several clinical studies assessing associations of immunotherapy and chemotherapy and/or antiangiogenic drugs and/or targeted therapies (such as PARPi) are ongoing in early or late relapse. Topics: Antibodies, Monoclonal, Humanized; Antineoplastic Agents, Immunological; Antineoplastic Combined Chemotherapy Protocols; Azepines; Bevacizumab; Carcinoma, Ovarian Epithelial; Female; Genes, BRCA1; Genes, BRCA2; Humans; Immunoconjugates; Immunotherapy; Isoxazoles; Maintenance Chemotherapy; Maytansine; Neoplasm Recurrence, Local; Ovarian Neoplasms; Platinum Compounds; Poly(ADP-ribose) Polymerase Inhibitors; Pteridines; Pyrazines; Pyrimidines | 2021 |
2 other study(ies) available for mln-8237 and Carcinoma--Ovarian-Epithelial
Article | Year |
---|---|
Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells.
Ovarian cancer is a leading killer of women, and no cure for advanced ovarian cancer is available. Alisertib (ALS), a selective Aurora kinase A (AURKA) inhibitor, has shown potent anticancer effects, and is under clinical investigation for the treatment of advanced solid tumor and hematologic malignancies. However, the role of ALS in the treatment of ovarian cancer remains unclear. This study investigated the effects of ALS on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT), and the underlying mechanisms in human epithelial ovarian cancer SKOV3 and OVCAR4 cells. Our docking study showed that ALS, MLN8054, and VX-680 preferentially bound to AURKA over AURKB via hydrogen bond formation, charge interaction, and π-π stacking. ALS had potent growth-inhibitory, proapoptotic, proautophagic, and EMT-inhibitory effects on SKOV3 and OVCAR4 cells. ALS arrested SKOV3 and OVCAR4 cells in G2/M phase and induced mitochondria-mediated apoptosis and autophagy in both SKOV3 and OVCAR4 cell lines in a concentration-dependent manner. ALS suppressed phosphatidylinositol 3-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways but activated 5'-AMP-dependent kinase, as indicated by their altered phosphorylation, contributing to the proautophagic activity of ALS. Modulation of autophagy altered basal and ALS-induced apoptosis in SKOV3 and OVCAR4 cells. Further, ALS suppressed the EMT-like phenotype in both cell lines by restoring the balance between E-cadherin and N-cadherin. ALS downregulated sirtuin 1 and pre-B cell colony enhancing factor (PBEF/visfatin) expression levels and inhibited phosphorylation of AURKA in both cell lines. These findings indicate that ALS blocks the cell cycle by G2/M phase arrest and promotes cellular apoptosis and autophagy, but inhibits EMT via phosphatidylinositol 3-kinase/Akt/mTOR-mediated and sirtuin 1-mediated pathways in human epithelial ovarian cancer cells. Further studies are warranted to validate the efficacy and safety of ALS in the treatment of ovarian cancer. Topics: Antineoplastic Agents; Apoptosis; Aurora Kinase A; Autophagy; Azepines; Binding Sites; Carcinoma, Ovarian Epithelial; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Epithelial-Mesenchymal Transition; Female; G2 Phase Cell Cycle Checkpoints; Humans; Hydrogen Bonding; Molecular Docking Simulation; Molecular Structure; Molecular Targeted Therapy; Neoplasms, Glandular and Epithelial; Ovarian Neoplasms; Phosphatidylinositol 3-Kinase; Protein Binding; Protein Conformation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrimidines; Signal Transduction; Sirtuin 1; Time Factors; TOR Serine-Threonine Kinases | 2015 |
Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion.
Aurora kinase A (AURKA) localizes to centrosomes and mitotic spindles where it mediates mitotic progression and chromosomal stability. Overexpression of AURKA is common in cancer, resulting in acquisition of alternate non-mitotic functions. In the current study, we identified a novel role for AURKA in regulating ovarian cancer cell dissemination and evaluated the efficacy of an AURKA-selective small molecule inhibitor, alisertib (MLN8237), as a single agent and combined with paclitaxel using an orthotopic xenograft model of epithelial ovarian cancer (EOC). Ovarian carcinoma cell lines were used to evaluate the effects of AURKA inhibition and overexpression on migration and adhesion. Pharmacological or RNA interference-mediated inhibition of AURKA significantly reduced ovarian carcinoma cell migration and adhesion and the activation-associated phosphorylation of the cytoskeletal regulatory protein SRC at tyrosine 416 (pSRC(Y416)). Conversely, enforced expression of AURKA resulted in increased migration, adhesion and activation of SRC in cultured cells. In vivo tumor growth and dissemination were inhibited by alisertib treatment as a single agent. Moreover, combination of alisertib with paclitaxel, an agent commonly used in treatment of EOC, resulted in more potent inhibition of tumor growth and dissemination compared with either drug alone. Taken together, these findings support a role for AURKA in EOC dissemination by regulating migration and adhesion. They also point to the potential utility of combining AURKA inhibitors with taxanes as a therapeutic strategy for the treatment of EOC patients. Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Aurora Kinase A; Azepines; Carcinoma, Ovarian Epithelial; Cell Adhesion; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Movement; Female; Humans; Mice; Mitosis; Neoplasm Metastasis; Neoplasm Transplantation; Neoplasms, Glandular and Epithelial; Ovarian Neoplasms; Paclitaxel; Phosphorylation; Protein Kinase Inhibitors; Pyrimidines; RNA Interference; RNA, Small Interfering; src-Family Kinases; Xenograft Model Antitumor Assays | 2014 |