mln-4760 and Kidney-Diseases

mln-4760 has been researched along with Kidney-Diseases* in 2 studies

Other Studies

2 other study(ies) available for mln-4760 and Kidney-Diseases

ArticleYear
Measurement of Angiotensin Converting Enzyme 2 Activity in Biological Fluid (ACE2).
    Methods in molecular biology (Clifton, N.J.), 2017, Volume: 1527

    Angiotensin-converting enzyme 2 (ACE2) is a recently described member of the renin-angiotensin system that hydrolyzes angiotensin (Ang) II to Ang-(1-7), and may thereby protect against cardiovascular and renal diseases. ACE2 is a type 1 integral membrane protein and contains a catalytically active ectodomain that can be shed from the cell surface into the extracellular space, via cleavage by a disintegrin and metalloproteinase-17 (ADAM-17). ACE2 enzymatic activity and protein can be detected in biological fluids, including urine, plasma, and conditioned cell culture media. We present a detailed method for measurement of ACE2 activity in biological fluids, using hydrolysis of an intramolecularly quenched fluorogenic ACE2 substrate, in the absence or presence of the ACE2 inhibitors MLN-4760 or DX600. Recombinant human or mouse ACE2 is used to generate standard curves for this assay, with ACE2 detection ranging from 1.56 to 50 ng/ml. While MLN-4760 potently inhibits the activity of both human and mouse ACE2, DX600 (linear form) only effectively blocks human ACE2 activity in this assay. In biological samples of human and mouse urine, cell culture medium from mouse proximal tubular cells, and mouse plasma, the mean intra- and inter-assay coefficients of variation (CVs) of the assay range from 1.43 to 4.39 %, and from 7.01 to 13.17 %, respectively. We present data on the time and substrate concentration dependence of the assay, and show that exogenous D -glucose, creatinine, urea, and albumin do not interfere with its performance. In biological fluids, this assay is a simple and reliable method to study the role of ACE2 and its shed fragments in cardiovascular and renal diseases.

    Topics: Angiotensin-Converting Enzyme 2; Animals; Biological Assay; Cardiovascular Diseases; Creatinine; Fluorescence; Glucose; Humans; Imidazoles; Kidney Diseases; Kidney Tubules, Proximal; Leucine; Mice; Peptides; Peptidyl-Dipeptidase A; Renin-Angiotensin System; Urea

2017
Effect of ACE2 and angiotensin-(1-7) in a mouse model of early chronic kidney disease.
    American journal of physiology. Renal physiology, 2010, Volume: 298, Issue:6

    Angiotensin-converting enzyme 2 (ACE2) is expressed at high levels in the kidney and converts angiotensin II (ANG II) to ANG-(1-7). We studied the effects of ACE2 inhibition and ANG-(1-7) in the (5/6) nephrectomy ((5/6) Nx) mouse model of chronic kidney disease (CKD). Male FVB mice underwent sham surgery (Sham) or (5/6) Nx and were administered either vehicle, the ACE2 inhibitor MLN-4760 (MLN), the AT(1) receptor antagonist losartan, MLN plus losartan, or ANG-(1-7) for 4 wk. In (5/6) Nx mice with or without MLN, kidney cortical ACE2 protein expression was significantly decreased at 4 wk, compared with Sham. Inhibition of ACE2 caused a decrease in renal cortical ACE2 activity. Kidney cortical ACE expression and activity did not differ between groups of mice. In (5/6) Nx mice treated with MLN, kidney levels of ANG II were significantly increased, compared with Sham. (5/6) Nx induced a mild but insignificant increase in blood pressure (BP), a 50% reduction in FITC-inulin clearance, and a significant increase in urinary albumin excretion. ACE2 inhibition in (5/6) Nx mice did not affect BP or FITC-inulin clearance but significantly increased albuminuria compared with (5/6) Nx alone, an effect reversed by losartan. Treatment of (5/6) Nx mice with ANG-(1-7) increased kidney and plasma levels of ANG-(1-7) but did not alter BP, FITC-inulin clearance, or urinary albumin excretion, and it increased relative mesangial area. These data indicate that kidney ACE2 is downregulated in the early period after (5/6) Nx. Inhibition of ACE2 in (5/6) Nx mice increases albuminuria via an AT(1) receptor-dependent mechanism, independent of BP. In contrast, ANG-(1-7) does not affect albuminuria after (5/6) Nx. We propose that endogenous ACE2 is renoprotective in CKD.

    Topics: Albuminuria; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Body Weight; Chronic Disease; Disease Models, Animal; Glomerular Filtration Rate; Hematocrit; Imidazoles; Infusion Pumps; Injections, Subcutaneous; Inulin; Kidney; Kidney Diseases; Leucine; Losartan; Male; Mice; Nephrectomy; Organ Size; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Time Factors

2010