mln-4760 has been researched along with Hypertension* in 3 studies
3 other study(ies) available for mln-4760 and Hypertension
Article | Year |
---|---|
Angiotensin-converting enzyme 2-independent action of presumed angiotensin-converting enzyme 2 activators: studies in vivo, ex vivo, and in vitro.
Angiotensin (Ang)-converting enzyme 2 (ACE2) is a key enzyme in the metabolism of Ang II. XNT (1-[(2-dimethylamino)ethylamino]-4-(hydroxymethyl)-7-[(4-methylphenyl) sulfonyl oxy]-9H-xanthene-9-one) and diminazene have been reported to exert various organ-protective effects, which are attributed to the activation of ACE2. To test the effect of these compounds, we studied Ang II degradation in vivo and in vitro as well as their effect on ACE2 activity in vivo and in vitro. In a model of Ang II-induced acute hypertension, blood pressure (BP) recovery was markedly enhanced by XNT (slope with XNT, -3.26±0.2 versus -1.6±0.2 mm Hg/min without XNT; P<0.01). After Ang II infusion, neither plasma nor kidney ACE2 activity was affected by XNT. Plasma Ang II and Ang (1-7) levels also were not significantly affected by XNT. The BP-lowering effect of XNT seen in wild-type animals was also observed in ACE2 knockout mice (slope with XNT, -3.09±0.30 versus -1.28±0.22 mm Hg/min without XNT; P<0.001). These findings show that the BP-lowering effect of XNT in Ang II-induced hypertension cannot be because of the activation of ACE2. In vitro and ex vivo experiments in both mice and rat kidney confirmed a lack of enhancement of ACE2 enzymatic activity by XNT and diminazene. Moreover, Ang II degradation in vitro and ex vivo was unaffected by XNT and diminazene. We conclude that the biological effects of these compounds are ACE2-independent and should not be attributed to the activation of this enzyme. Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Diminazene; Disease Models, Animal; Glutamyl Aminopeptidase; Hypertension; Imidazoles; In Vitro Techniques; Kidney; Leucine; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Xanthones | 2014 |
Murine recombinant angiotensin-converting enzyme 2: effect on angiotensin II-dependent hypertension and distinctive angiotensin-converting enzyme 2 inhibitor characteristics on rodent and human angiotensin-converting enzyme 2.
A newly produced murine recombinant angiotensin (Ang)-converting enzyme 2 (ACE2) was characterized in vivo and in vitro. The effects of available ACE2 inhibitors (MLN-4760 and 2 conformational variants of DX600, linear and cyclic) were also examined. When murine ACE2 was given to mice for 4 weeks, a marked increase in serum ACE2 activity was sustainable. In acute studies, mouse ACE2 (1 mg/kg) obliterated hypertension induced by Ang II infusion by rapidly decreasing plasma Ang II. These effects were blocked by MLN-4760 but not by either form of DX600. In vitro, conversion from Ang II to Ang-(1-7) by mouse ACE2 was blocked by MLN-4760 (10(-6) m) but not by either form of DX600 (10(-5) m). Quantitative analysis of multiple Ang peptides in plasma ex vivo revealed formation of Ang-(1-9) from Ang I by human but not by mouse ACE2. Both human and mouse ACE2 led to the dissipation of Ang II with formation of Ang (1-7). By contrast, mouse ACE2-driven Ang-(1-7) formation from Ang II was blocked by MLN-4760 but not by either linear or cyclic DX600. In conclusion, sustained elevations in serum ACE2 activity can be accomplished with murine ACE2 administration, thereby providing a strategy for ACE2 amplification in chronic studies using rodent models of hypertension and cardiovascular disease. Human but not mouse ACE2 degrades Ang I to form Ang-(1-9). There are also species differences regarding rodent and human ACE2 inhibition by known inhibitors such that MLN-4760 inhibits both human and mouse ACE2, whereas DX600 only blocks human ACE2 activity. Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Disease Models, Animal; Humans; Hydrolysis; Hypertension; Imidazoles; In Vitro Techniques; Kidney; Leucine; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Peptides; Peptidyl-Dipeptidase A; Recombinant Proteins | 2012 |
Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1-7) in transgenic Ren-2 hypertensive rats.
Angiotensin-converting enzyme-2 (ACE2) converts angiotensin II (ANG II) to angiotensin-(1-7) [ANG-(1-7)], and this enzyme may serve as a key regulatory juncture in various tissues. Although the heart expresses ACE2, the extent that the enzyme participates in the cardiac processing of ANG II and ANG-(1-7) is equivocal. Therefore, we utilized the Langendorff preparation to characterize the ACE2 pathway in isolated hearts from male normotensive Sprague-Dawley [Tg((-))] and hypertensive [mRen2]27 [Tg((+))] rats. During a 60-min recirculation period with 10 nM ANG II, the presence of ANG-(1-7) was assessed in the cardiac effluent. ANG-(1-7) generation from ANG II was similar in both the normal and hypertensive hearts [Tg((-)): 510 +/- 55 pM, n=20 vs. Tg((+)): 497 +/- 63 pM, n=14] with peak levels occurring at 30 min after administration of the peptide. ACE2 inhibition (MLN-4760, 1 microM) significantly reduced ANG-(1-7) production by 83% (57 +/- 19 pM, P<0.01, n=7) in the Tg((+)) rats, whereas the inhibitor had no significant effect in the Tg((-)) rats (285 +/- 53 pM, P>0.05, n=10). ACE2 activity was found in the effluent of perfused Tg((-)) and Tg((+)) hearts, and it was highly associated with ACE2 protein expression (r=0.78). This study is the first demonstration for a direct role of ACE2 in the metabolism of cardiac ANG II in the hypertrophic heart of hypertensive rats. We conclude that predominant expression of cardiac ACE2 activity in the Tg((+)) may be a compensatory response to the extensive cardiac remodeling in this strain. Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Animals, Genetically Modified; Cardiomegaly; Disease Models, Animal; Half-Life; Hypertension; Imidazoles; Kinetics; Leucine; Male; Mice; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Renin | 2007 |