mk-2206 has been researched along with Ovarian-Neoplasms* in 6 studies
6 other study(ies) available for mk-2206 and Ovarian-Neoplasms
Article | Year |
---|---|
Hemiasterlin derivative (R)(S)(S)-BF65 and Akt inhibitor MK-2206 synergistically inhibit SKOV3 ovarian cancer cell growth.
We reported previously that a hemiasterlin derivative BF65 is a potent anticancer agent that can inhibit microtubule assembly. Here we show that a more potent stereospecific diastereomer (R)(S)(S)-BF65 can synergize with an allosteric Akt inhibitor MK-2206 to suppress the growth of SKOV3 ovarian cancer cells with constitutively active Akt. (R)(S)(S)-BF65 induced mitotic arrest and MK-2206 caused G0/G1 arrest, while the combination of both induced simultaneous G0/G1 and G2/M cell cycle arrest. (R)(S)(S)-BF65 induced phosphorylation and inactivation of Bcl-2, and downregulated Mcl-1, consequently may lead to apoptosis. (R)(S)(S)-BF65 inhibited mitogen-activated protein kinases (MAPKs), which may stimulate cell proliferation upon activation. (R)(S)(S)-BF65 also induced DNA damage after long-term treatment. MK-2206 is known to inhibit phosphorylation and activation of Akt and suppress cancer cell growth. The combination of (R)(S)(S)-BF65 and MK-2206 also inhibited the Akt pathway. Interestingly, MK-2206 upregulated Bcl-2 and induced activation of MAPKs in SKOV3 cells; however, when combined with (R)(S)(S)-BF65, these prosurvival effects were reversed. The combination also more significantly decreased Mcl-1 protein, increased PARP cleavage, and induced γ-H2AX, a DNA damage marker. Remarkably, MK-2206 enhanced the microtubule depolymerization effect of (R)(S)(S)-BF65. The combination of (R)(S)(S)-BF65 and MK-2206 also markedly inhibited cell migration. Thus, MK-2206 synergizes with (R)(S)(S)-BF65 to inhibit SKOV3 cell growth via downregulating the Akt signaling pathway, and enhancing the microtubule disruption effect of (R)(S)(S)-BF65. (R)(S)(S)-BF65 in turn suppresses Bcl-2 and MAPKs induced by MK-2206. (R)(S)(S)-BF65 and MK-2206 compensate each other leading to increased apoptosis and enhanced cytotoxicity, and may also suppress cancer cell invasion. Topics: Antineoplastic Agents; Apoptosis; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cell Survival; Drug Synergism; Female; Heterocyclic Compounds, 3-Ring; Humans; Oligopeptides; Ovarian Neoplasms; Proto-Oncogene Proteins c-akt; Stereoisomerism | 2016 |
MK-2206 sensitizes BRCA-deficient epithelial ovarian adenocarcinoma to cisplatin and olaparib.
Platinum resistance is a major obstacle in the treatment of epithelial ovarian cancer (EOC). Activation of the AKT pathway promotes platinum resistance while inhibition of AKT sensitizes chemoresistant cells. Patients with BRCA mutant EOC, and thus a defect in the homologous recombination (HR) repair pathway, demonstrate greater clinical response to platinum and olaparib therapy than patients with BRCA wild-type EOC. MK-2206, an allosteric inhibitor of AKT phosphorylation, sensitizes a variety of cell types to various anticancer agents and is currently undergoing phase II trials as monotherapy for platinum-resistant ovarian, fallopian tube, and peritoneal cancer. This study examines the differential effects of AKT inhibition with cisplatin and olaparib therapy in BRCA1/2-deficient versus wild-type EOC.. PEO1, a chemosensitive BRCA2-mutant serous ovarian adenocarcinoma, and PEO4, a reverted BRCA2-proficient line from the same patient after the development of chemotherapeutic resistance, were primarily used for the study. In PEO1, MK-2206 demonstrated moderate to strong synergism with cisplatin and olaparib at all doses, while demonstrating antagonism at all doses in PEO4.. Baseline phospho-AKT activity in untreated cells was upregulated in both BRCA1- and 2-deficient cell lines. MK-2206 prevented cisplatin- and olaparib-induced AKT activation in the BRCA2-deficient PEO1 cells. We propose that BRCA-deficient EOC cells upregulate baseline AKT activity to enhance survival in the absence of HR. Higher AKT activity is also required to withstand cytotoxic agent-induced DNA damage, leading to strong synergism between MK-2206 and cisplatin or olaparib therapy in BRCA-deficient cells.. MK-2206 shows promise as a chemosensitization agent in BRCA-deficient EOC and merits clinical investigation in this patient population. Topics: BRCA1 Protein; Carcinoma, Ovarian Epithelial; Cell Line, Tumor; Cell Survival; Cisplatin; Drug Synergism; Female; Gene Expression Regulation, Neoplastic; Heterocyclic Compounds, 3-Ring; Humans; Mutation; Neoplasms, Glandular and Epithelial; Ovarian Neoplasms; Phosphorylation; Phthalazines; Piperazines; Proto-Oncogene Proteins c-akt | 2016 |
The Akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel (Taxol) and cisplatin in ovarian cancer cells.
Abnormalities in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway are commonly observed in human cancers and contribute to chemotherapy resistance. Combination therapy, involving the use of molecular targeted agents and traditional cytotoxic drugs, may represent a promising strategy to lower resistance and enhance cytotoxicity. Here, we demonstrate the efficacy of an Akt inhibitor, MK-2206, in increasing the cytotoxic effect of either paclitaxel (Taxol) or cisplatin against the ovarian cancer cell lines SKOV3 (with constitutively active Akt) and ES2 (with inactive Akt). Sequential treatment of Taxol or cisplatin, followed by MK-2206, induced a synergistic inhibition of cell proliferation and effectively promoted cell death, either by inhibiting the phosphorylation of Akt and its downstream effectors 4E-BP1 and p70S6K in SKOV3 cells or by restoring p53 levels, which were downregulated after Taxol or cisplatin treatment, in ES2 cells. Combination treatment also downregulated the pro-survival protein Bcl-2 in both SKOV3 and ES2 cells, which may have contributed to cell death. In addition, we discovered that Taxol/MK-2206 or cisplatin/MK-2206 combination treatment resulted in significant enhancement of intracellular reactive oxygen species (ROS) induced by MK-2206, in both SKOV3 and ES2 cells; however, MK-2206-induced growth inhibition was reversed by a ROS scavenger only in ES2 cells. MK-2206 also suppressed DNA repair, particularly in SKOV3 cells. Taken together, our results demonstrate that the Akt inhibitor MK-2206 enhances the efficacy of cytotoxic agents in both Akt-active and Akt-inactive ovarian cancer cells but through different mechanisms. Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cisplatin; Drug Synergism; Female; Heterocyclic Compounds, 3-Ring; Humans; Ovarian Neoplasms; Paclitaxel; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Tumor Suppressor Protein p53 | 2015 |
MiR-489 modulates cisplatin resistance in human ovarian cancer cells by targeting Akt3.
MicroRNAs are a conserved class of small noncoding RNA molecules that harbour the capacity to regulate protein-coding gene expression at the post-transcriptional level. In the current study, we show that miR-489 is downregulated in cisplatin (CDDP)-resistant ovarian cancer cells, SKOV3/CDDP and OVCAR3/CDDP cells. MiR-489 overexpression results in an inhibition of SKOV3 and OVCAR3 cell survival and cell growth after CDDP treatment and an induction of cell apoptosis. Inhibition of miR-489 yields the opposite results. In addition, miR-489 overexpression increases the sensitivity of SKOV3/CDDP and OVCAR3/CDDP cells to CDDP and inhibits their colony number. Akt3 is validated as a direct target of miR-489 in SKOV3, OVCAR3, SKOV3/CDDP and OVCAR3/CDDP cells. In addition, miR-489 suppresses Akt3 protein expression by binding sites on its 3'UTR. Knockdown of Akt3 results in a similar effect as that because of miR-489 overexpression; importantly, Akt3 silencing rescues the functions induced by miR-489. Furthermore, we also use the Akt3 inhibitor, MK-2206 2HCl, to determine the role of Akt3 in CDDP resistance. Our study showed that MK-2206 2HCl increased the sensitivity of SKOV3/CDDP and OVCAR3/CDDP cells to CDDP. Taken together, our results indicate that miR-489 inhibited CDDP resistance and cell growth, and promotes apoptosis by suppressing Akt3 expression. Furthermore, the identification of a novel miR-489-based pathway in CDDP-resistant ovarian cancer will facilitate the development of therapeutic strategies. Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Cisplatin; Drug Resistance, Neoplasm; Female; Heterocyclic Compounds, 3-Ring; Humans; MicroRNAs; Ovarian Neoplasms; Proto-Oncogene Proteins c-akt | 2014 |
Exploiting MEK inhibitor-mediated activation of ERα for therapeutic intervention in ER-positive ovarian carcinoma.
While the clinical benefit of MEK inhibitor (MEKi)-based therapy is well established in Raf mutant malignancies, its utility as a suppressor of hyperactive MAPK signaling in the absence of mutated Raf or Ras, is an area of ongoing research. MAPK activation is associated with loss of ERα expression and hormonal resistance in numerous malignancies. Herein, we demonstrate that MEKi induces a feedback response that results in ERα overexpression, phosphorylation and transcriptional activation of ER-regulated genes. Mechanistically, MEKi-mediated ERα overexpression is largely independent of erbB2 and AKT feedback activation, but is ERK-dependent. We subsequently exploit this phenomenon therapeutically by combining the ER-antagonist, fulvestrant with MEKi. This results in synergistic suppression of tumor growth, in vitro and potentiation of single agent activity in vivo in nude mice bearing xenografts. Thus, we demonstrate that exploiting adaptive feedback after MEKi can be used to sensitize ERα-positive tumors to hormonal therapy, and propose that this strategy may have broader clinical utility in ERα-positive ovarian carcinoma. Topics: Animals; Antineoplastic Agents, Hormonal; Benzamides; Carcinoma; Cell Line, Tumor; Diphenylamine; Estradiol; Estrogen Receptor alpha; Extracellular Signal-Regulated MAP Kinases; Feedback, Physiological; Female; Fulvestrant; Gene Expression Regulation, Neoplastic; Heterocyclic Compounds, 3-Ring; Humans; Lapatinib; MAP Kinase Kinase Kinases; Mice; Mice, Nude; Ovarian Neoplasms; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Quinazolines; Signal Transduction; Xenograft Model Antitumor Assays | 2013 |
The insulin-like growth factor 1 pathway is a potential therapeutic target for low-grade serous ovarian carcinoma.
To validate the overexpression of insulin-like growth factor 1 (IGF-1) and its receptor (IGF-1R) in low-grade serous ovarian carcinoma (SOC), and to investigate whether the IGF-1 pathway is a potential therapeutic target for low-grade SOC.. Gene expression profiling was performed on serous borderline ovarian tumors (SBOTs) and low-grade SOC, and overexpression of IGF-1 in low-grade SOC was validated by RT-PCR and immunohistochemistry. The effect of exogenous IGF-1 on cell proliferation was determined in cell lines by cell proliferation assays, cell migration assays, and Western blot. Signaling pathways downstream of IGF-1 and the effects of the AKT inhibitor MK-2206 were investigated by Western blot analysis and by generating IGF-1R short hairpin RNA stable knockdown cell lines. Low- and high-grade cell lines were treated with the dual IGF-1R- and insulin receptor-directed tyrosine kinase inhibitor OSI-906, and cellular proliferation was measured.. mRNA analysis and immunostaining revealed significantly higher IGF-1 expression in low-grade SOCs than in SBOTs or high-grade SOCs. In response to exogenous treatment with IGF-1, low-grade cell lines exhibited more intense upregulation of phosphorylated AKT than did high-grade cell lines, an effect that was diminished with IGF-1R knockdown and MK-2206 treatment. Low-grade SOC cell lines were more sensitive to growth inhibition with OSI-906 than were high-grade cell lines.. IGF-1 is overexpressed in low-grade SOCs compared with SBOTs and high-grade SOCs. Additionally, low-grade SOC cell lines were more responsive to IGF-1 stimulation and IGF-1R inhibition than were high-grade lines. The IGF-1 pathway is therefore a potential therapeutic target in low-grade SOC. Topics: Cell Growth Processes; Cell Line, Tumor; Cystadenocarcinoma, Serous; Female; Gene Expression Profiling; Gene Knockdown Techniques; Heterocyclic Compounds, 3-Ring; Humans; Imidazoles; Insulin-Like Growth Factor I; Molecular Targeted Therapy; Ovarian Neoplasms; Proto-Oncogene Proteins c-akt; Pyrazines; Receptor, IGF Type 1; Signal Transduction; Up-Regulation | 2011 |