mk-2206 has been researched along with Mouth-Neoplasms* in 2 studies
2 other study(ies) available for mk-2206 and Mouth-Neoplasms
Article | Year |
---|---|
Elevated Expression of Zinc Finger Protein 703 Promotes Cell Proliferation and Metastasis through PI3K/AKT/GSK-3β Signalling in Oral Squamous Cell Carcinoma.
Zinc finger protein 703 (ZNF703), initially identified as a novel oncogene in human breast cancer, is a member of the NET/NlZ family of zinc finger transcription factors. It is recognized that the overexpression of ZNF703 is associated with various types of human cancers, but the role and molecular mechanism of ZNF703 in oral squamous cell carcinoma (OSCC) are unknown.. ZNF703 expression levels were examined in OSCC tissues and non-cancerous tissues by qRT-PCR and immunohistochemistry (IHC). The molecular mechanisms of ZNF703 and its effects on cell growth and metastasis were explored in vitro and in vivo using the CCK8 assay, colony formation assay, cell cycle analysis, migration and invasion assays, wound-healing assay, western blotting and xenograft experiments in nude mice.. In this study, ZNF703 was found to be upregulated in OSCC tissues compared to that in normal tissues at both mRNA and protein levels, and its expression level was closely correlated with the overall survival of patients with OSCC. Silencing of the ZNF703 gene in OSCC cells significantly inhibited cell growth and metastasis in vitro and in vivo. Conversely, the overexpression of ZNF703 in OSCC cells promoted cancer growth and metastasis in vitro. Mechanistically, ZNF703 activated the PI3K/AKT/GSK-3β signalling pathway and its downstream effectors, thus regulating the cell cycle and epithelial-mesenchymal transition (EMT). Furthermore, the promotive effects of ZNF703 on cellular proliferation and metastasis could be rescued by LY294002 (a PI3K-specific inhibitor) and MK2206 (an Akt-specific inhibitor).. The results show that ZNF703 promotes cell growth and metastasis through PI3K/Akt/GSK-3β signalling in OSCC and that it may be a promising target in the treatment of patients with OSCC. Topics: Animals; Carcinoma, Squamous Cell; Carrier Proteins; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Movement; Cell Proliferation; Chromones; Epithelial-Mesenchymal Transition; Female; Glycogen Synthase Kinase 3 beta; Heterocyclic Compounds, 3-Ring; Humans; Immunohistochemistry; Kaplan-Meier Estimate; Male; Mice; Mice, Nude; Microscopy, Fluorescence; Middle Aged; Morpholines; Mouth Neoplasms; Optical Imaging; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Real-Time Polymerase Chain Reaction; RNA Interference; RNA, Small Interfering; Signal Transduction; Transplantation, Heterologous; Up-Regulation | 2017 |
p62/SQSTM1 accumulation in squamous cell carcinoma of head and neck predicts sensitivity to phosphatidylinositol 3-kinase pathway inhibitors.
The phosphoinositol-3 kinase (PI3K) pathway is highly dysregulated in squamous cell carcinoma of the head and neck (SCCHN). While inhibitors of the PI3K/AKT pathway are being developed in cancer, their efficacy does not appear to be related to the presence of mutations or amplification in pathway genes. The PI3K pathway is a major regulator of macro-autophagy, an evolutionarily conserved catabolic process that degrades cellular materials to promote cellular homeostasis and survival under stress. Employing a panel of SCCHN cell lines, we observed a significant correlation between the activity of PI3K/AKT inhibitors and their ability to induce autophagy. More specifically, resistance to these inhibitors was associated with accumulation of p62/SQSTM1, a pleotropic protein that is consumed during autophagy, while loss of autophagy was, for the first time, found to be due to silencing of an essential autophagy gene, ATG7. Moreover, modulating ATG7 and p62/SQSTM1 could regulate sensitivity to PI3K/AKT inhibitors, underscoring a mechanistic link between autophagy and drug sensitivity. Analysis of human tissues revealed progressive accumulation of p62/SQSTM1 in a significant proportion of cancer samples compared to normal tissue, suggesting that defective autophagy has relevance to SCCHN. These findings are further validated by analysis of TCGA data confirming homozygous deletion and mRNA down-regulation of ATG7 in 10.0% of SCCHN samples. Taken together, these data indicate that p62/SQSTM1 levels modulate sensitivity to PI3K/AKT inhibitors; cancers vary in their capacity to undergo autophagy through epigenetic modification and, when deficient, accumulate p62/SQSTM1; and expression of autophagy-related proteins may serve as markers for resistance to PI3K/AKT inhibitors in SCCHN. Topics: Adaptor Proteins, Signal Transducing; Antineoplastic Agents; Autophagy; Autophagy-Related Protein 7; Carcinoma, Squamous Cell; Cell Line, Tumor; Class I Phosphatidylinositol 3-Kinases; Drug Resistance, Neoplasm; Gene Expression; Heterocyclic Compounds, 3-Ring; Humans; Mouth Neoplasms; Mutation; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Quinoxalines; Sequestosome-1 Protein; Sulfonamides; Tissue Array Analysis; Ubiquitin-Activating Enzymes | 2014 |