mk-2206 has been researched along with Adenocarcinoma* in 3 studies
1 trial(s) available for mk-2206 and Adenocarcinoma
Article | Year |
---|---|
Effect of Selumetinib and MK-2206 vs Oxaliplatin and Fluorouracil in Patients With Metastatic Pancreatic Cancer After Prior Therapy: SWOG S1115 Study Randomized Clinical Trial.
KRAS mutations are common in pancreatic cancer, but directly targeting the KRAS protein has thus far been unsuccessful. The aim of this trial was to block the MEK and PI3K/AKT pathways downstream of the KRAS protein as an alternate treatment strategy to slow cancer growth and prolong survival. This was the first cooperative group trial to evaluate this strategy using molecularly targeted oral combination therapy for the treatment of chemotherapy-refractory pancreatic cancer.. To compare selumetinib and MK-2206 vs modified FOLFOX (mFOLFOX) in patients with metastatic pancreatic cancer for whom gemcitabine-based therapy had failed.. SWOG S1115 was a randomized phase 2 clinical trial. Between September 2012 and May 2014, 137 patients with metastatic pancreatic adenocarcinoma for whom gemcitabine-based chemotherapy had failed were randomized to selumetinib plus MK-2206 or mFOLFOX. Patients were randomized in a 1:1 fashion and stratified according to duration of prior systemic therapy and presence of liver metastases.. Patients received selumetinib 100 mg orally per day plus MK-2206 135 mg orally once per week or mFOLFOX (oxaliplatin, 85 mg/m2 intravenous, and fluorouracil, 2400 mg/m2 intravenous infusion over 46-48 hours) on days 1 and 15 of a 28-day cycle.. The primary end point of the study was overall survival. Secondary objectives included evaluating toxic effects, objective tumor response, and progression-free survival.. There were 58 patients in the selumetinib plus MK-2206 (experimental) arm (60% male; median [range] age, 69 [54-88] years) and 62 patients in the mFOLFOX arm (35% male; median [range] age, 65 [34-82] years). In the experimental arm, median overall survival was shorter (3.9 vs 6.7 months; HR, 1.37; 95% CI, 0.90-2.08; Pā=ā.15), as was median progression-free survival (1.9 vs 2.0 months; HR, 1.61; 95% CI, 1.07-2.43; Pā=ā.02). One vs 5 patients had a partial response and 12 vs 14 patients had stable disease in the experimental arm vs mFOLFOX arm. Grade 3 or higher toxic effects were observed in 39 patients treated with selumetinib and MK-2206 vs 23 patients treated with mFOLFOX. More patients in the experimental arm discontinued therapy due to adverse events (13 vs 7 patients).. Dual targeting of the MEK and PI3K/AKT pathways downstream of KRAS by selumetinib plus MK-2206 did not improve overall survival in patients with metastatic pancreatic adenocarcinoma for whom gemcitabine-based chemotherapy had failed. This was the first randomized prospective evaluation of mFOLFOX in the US population that showed comparable results to CONKO-003 and PANCREOX.. clinicaltrials.gov Identifier: NCT01658943. Topics: Adenocarcinoma; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; Disease-Free Survival; Female; Fluorouracil; Heterocyclic Compounds, 3-Ring; Humans; Kaplan-Meier Estimate; Male; Middle Aged; Organoplatinum Compounds; Oxaliplatin; Pancreatic Neoplasms; Proportional Hazards Models; Salvage Therapy | 2017 |
2 other study(ies) available for mk-2206 and Adenocarcinoma
Article | Year |
---|---|
SOX2 functions as a molecular rheostat to control the growth, tumorigenicity and drug responses of pancreatic ductal adenocarcinoma cells.
Pancreatic ductal adenocarcinoma (PDAC) is a highly deadly malignancy. Expression of the stem cell transcription factor SOX2 increases during progression of PDAC. Knockdown of SOX2 in PDAC cell lines decreases growth in vitro; whereas, stable overexpression of SOX2 in one PDAC cell line reportedly increases growth in vitro. Here, we reexamined the role of SOX2 in PDAC cells, because inducible SOX2 overexpression in other tumor cell types inhibits growth. In this study, four PDAC cell lines were engineered for inducible overexpression of SOX2 or inducible knockdown of SOX2. Remarkably, inducible overexpression of SOX2 in PDAC cells inhibits growth in vitro and reduces tumorigenicity. Additionally, inducible knockdown of SOX2 in PDAC cells reduces growth in vitro and in vivo. Thus, growth and tumorigenicity of PDAC cells is highly dependent on the expression of optimal levels of SOX2 - a hallmark of molecular rheostats. We also determined that SOX2 alters the responses of PDAC cells to drugs used in PDAC clinical trials. Increasing SOX2 reduces growth inhibition mediated by MEK and AKT inhibitors; whereas knockdown of SOX2 further reduces growth when PDAC cells are treated with these inhibitors. Thus, targeting SOX2, or its mode of action, could improve the treatment of PDAC. Topics: Adenocarcinoma; Animals; Antineoplastic Agents; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Proliferation; Doxorubicin; Female; Heterocyclic Compounds, 3-Ring; Humans; Mice; Mice, Nude; Mitogen-Activated Protein Kinase Kinases; Pancreatic Neoplasms; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins p21(ras); Pyridones; Pyrimidinones; RNA Interference; RNA, Small Interfering; SOXB1 Transcription Factors | 2016 |
Resistance to the tyrosine kinase inhibitor axitinib is associated with increased glucose metabolism in pancreatic adenocarcinoma.
Alterations in energy (glucose) metabolism are key events in the development and progression of cancer. In pancreatic adenocarcinoma (PDAC) cells, we investigated changes in glucose metabolism induced by resistance to the receptor tyrosine kinase inhibitor (RTKI) axitinib. Here, we show that human cell lines and mouse PDAC cell lines obtained from the spontaneous pancreatic cancer mouse model (Kras(G12D)Pdx1-cre) were sensitive to axitinib. The anti-proliferative effect was due to a G2/M block resulting in loss of 70-75% cell viability in the most sensitive PDAC cell line. However, a surviving sub-population showed a 2- to 3-fold increase in [C-14]deoxyglucose ([C-14]DG) uptake. This was sustained in axitinib-resistant cell lines, which were derived from parental PDAC. In addition to the axitinib-induced increase in [C-14]DG uptake, we observed a translocation of glucose transporter-1 (Glut-1) transporters from cytosolic pools to the cell surface membrane and a 2-fold increase in glycolysis rates measured by the extracellular acidification rate (ECAR). We demonstrated an axitinib-induced increase in phosphorylated Protein Kinase B (pAkt) and by blocking pAkt with a phosphatidylinositol-3 kinase (PI3K) inhibitor we reversed the Glut-1 translocation and restored sensitivity to axitinib treatment. Combination treatment with both axitinib and Akt inhibitor in parental pancreatic cell line resulted in a decrease in cell viability beyond that conferred by single therapy alone. Our study shows that PDAC resistance to axitinib results in increased glucose metabolism mediated by activated Akt. Combining axitinib and an Akt inhibitor may improve treatment in PDAC. Topics: Adenocarcinoma; Animals; Axitinib; Cell Membrane; Cell Proliferation; Cell Shape; Cell Survival; Clone Cells; Drug Resistance, Neoplasm; Enzyme Activation; G2 Phase Cell Cycle Checkpoints; Glucose; Glucose Transporter Type 1; Heterocyclic Compounds, 3-Ring; Humans; Imidazoles; Indazoles; Mice; Mitosis; Pancreatic Neoplasms; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt | 2014 |