mk-0893 and Diabetes-Mellitus--Type-2

mk-0893 has been researched along with Diabetes-Mellitus--Type-2* in 3 studies

Other Studies

3 other study(ies) available for mk-0893 and Diabetes-Mellitus--Type-2

ArticleYear
The discovery of N-((2H-tetrazol-5-yl)methyl)-4-((R)-1-((5r,8R)-8-(tert-butyl)-3-(3,5-dichlorophenyl)-2-oxo-1,4-diazaspiro[4.5]dec-3-en-1-yl)-4,4-dimethylpentyl)benzamide (SCH 900822): a potent and selective glucagon receptor antagonist.
    Journal of medicinal chemistry, 2014, Mar-27, Volume: 57, Issue:6

    A novel series of spiroimidazolone-based antagonists of the human glucagon receptor (hGCGR) has been developed. Our efforts have led to compound 1, N-((2H-tetrazol-5-yl)methyl)-4-((R)-1-((5r,8R)-8-(tert-butyl)-3-(3,5-dichlorophenyl)-2-oxo-1,4-diazaspiro[4.5]dec-3-en-1-yl)-4,4-dimethylpentyl)benzamide (SCH 900822), a potent hGCGR antagonist with exceptional selectivity over the human glucagon-like peptide-1 receptor. Oral administration of 1 lowered 24 h nonfasting glucose levels in imprinting control region mice on a high fat diet with diet-induced obesity following single oral doses of 3 and 10 mg/kg. Furthermore, compound 1, when dosed orally, was found to decrease fasting blood glucose at 30 mg/kg in a streptozotocin-treated, diet-induced obesity mouse pharmacodynamic assay and blunt exogenous glucagon-stimulated glucose excursion in prediabetic mice.

    Topics: Animals; Benzamides; Blood Glucose; Cyclohexanones; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Drug Discovery; Glucagon; Mice; Mice, Inbred ICR; Obesity; Prediabetic State; Receptors, Glucagon; Spiro Compounds; Structure-Activity Relationship

2014
The design and synthesis of a potent glucagon receptor antagonist with favorable physicochemical and pharmacokinetic properties as a candidate for the treatment of type 2 diabetes mellitus.
    Bioorganic & medicinal chemistry letters, 2013, May-15, Volume: 23, Issue:10

    A novel and potent small molecule glucagon receptor antagonist for the treatment of diabetes mellitus is reported. This candidate, (S)-3-[4-(1-{3,5-dimethyl-4-[4-(trifluoromethyl)-1H-pyrazol-1-yl]phenoxy}butyl)benzamido]propanoic acid, has lower molecular weight and lipophilicity than historical glucagon receptor antagonists, resulting in excellent selectivity in broad-panel screening, lower cytotoxicity, and excellent overall in vivo safety in early pre-clinical testing. Additionally, it displays low in vivo clearance and excellent oral bioavailability in both rats and dogs. In a rat glucagon challenge model, it was shown to reduce the glucagon-elicited glucose excursion in a dose-dependent manner and at a concentration consistent with its rat in vitro potency. Its properties make it an excellent candidate for further investigation.

    Topics: Animals; Chemistry, Physical; Diabetes Mellitus, Type 2; Dogs; Dose-Response Relationship, Drug; Drug Design; Epithelial Cells; Haplorhini; Humans; Liver; Mice; Molecular Structure; Propionates; Rats; Receptors, Glucagon; Small Molecule Libraries; Structure-Activity Relationship

2013
Discovery of a novel glucagon receptor antagonist N-[(4-{(1S)-1-[3-(3, 5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-β-alanine (MK-0893) for the treatment of type II diabetes.
    Journal of medicinal chemistry, 2012, Jul-12, Volume: 55, Issue:13

    A potent, selective glucagon receptor antagonist 9m, N-[(4-{(1S)-1-[3-(3,5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-β-alanine, was discovered by optimization of a previously identified lead. Compound 9m is a reversible and competitive antagonist with high binding affinity (IC(50) of 6.6 nM) and functional cAMP activity (IC(50) of 15.7 nM). It is selective for glucagon receptor relative to other family B GPCRs, showing IC(50) values of 1020 nM for GIPR, 9200 nM for PAC1, and >10000 nM for GLP-1R, VPAC1, and VPAC2. Compound 9m blunted glucagon-induced glucose elevation in hGCGR mice and rhesus monkeys. It also lowered ambient glucose levels in both acute and chronic mouse models: in hGCGR ob/ob mice it reduced glucose (AUC 0-6 h) by 32% and 39% at 3 and 10 mpk single doses, respectively. In hGCGR mice on a high fat diet, compound 9m at 3, and 10 mpk po in feed lowered blood glucose levels by 89% and 94% at day 10, respectively, relative to the difference between the vehicle control and lean hGCGR mice. On the basis of its favorable biological and DMPK properties, compound 9m (MK-0893) was selected for further preclinical and clinical evaluations.

    Topics: Animals; Area Under Curve; beta-Alanine; Blood Glucose; CHO Cells; Cricetinae; Cricetulus; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Dogs; Glucagon; Glucagon-Like Peptide-1 Receptor; Humans; Inhibitory Concentration 50; Macaca mulatta; Mice; Mice, Obese; Microsomes, Liver; Pyrazoles; Rats; Receptors, Gastrointestinal Hormone; Receptors, Glucagon; Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I; Receptors, Vasoactive Intestinal Peptide, Type II; Receptors, Vasoactive Intestinal Polypeptide, Type I

2012