mjn110 has been researched along with Disease-Models--Animal* in 6 studies
6 other study(ies) available for mjn110 and Disease-Models--Animal
Article | Year |
---|---|
The Novel Monoacylglycerol Lipase Inhibitor MJN110 Suppresses Neuroinflammation, Normalizes Synaptic Composition and Improves Behavioral Performance in the Repetitive Traumatic Brain Injury Mouse Model.
Modulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes. Spatial learning and memory deficits examined by Morris water maze between three and four weeks post-TBI were also reversed in the drug treated animals. Administration of MJN110 selectively elevated the levels of 2-AG and reduced the production of arachidonic acid (AA) and prostaglandin E Topics: Animals; Behavior, Animal; Brain Injuries, Traumatic; Carbamates; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Gene Expression Regulation; Humans; Mice; Monoacylglycerol Lipases; Neuroinflammatory Diseases; Neurons; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Succinimides; Synapses | 2021 |
The Endocannabinoid System Alleviates Pain in a Murine Model of Cancer-Induced Bone Pain.
Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis is long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects. In our study, we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer-induced bone pain. Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activates CB1 and CB2 receptors to inhibit inflammation and pain. We demonstrate that administration of MJN110 significantly and dose dependently alleviates spontaneous pain behavior during acute administration compared with vehicle control. In addition, MJN110 maintains its efficacy in a chronic-dosing paradigm over the course of 7 days without signs of receptor sensitization. In vitro analysis of MJN110 demonstrated a dose-dependent and significant decrease in cell viability and proliferation of 66.1 breast adenocarcinoma cells to a greater extent than KML29, an alternate MAGL inhibitor, or the CB2 agonist JWH015. Chronic administration of the compound did not appear to affect tumor burden, as evidenced by radiograph or histologic analysis. Together, these data support the application for MJN110 as a novel therapeutic for cancer-induced bone pain. SIGNIFICANCE STATEMENT: Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non-opioid-based therapies is essential, and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone. Topics: Animals; Bone Neoplasms; Cancer Pain; Carbamates; Cell Line, Tumor; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Female; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Monoacylglycerol Lipases; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Succinimides | 2020 |
Neuroprotective Effects of MAGL (Monoacylglycerol Lipase) Inhibitors in Experimental Ischemic Stroke.
MAGL (monoacylglycerol lipase) is an enzyme that hydrolyzes the endocannabinoid 2-arachidonoylglycerol and regulates the production of arachidonic acid and prostaglandins-substances that mediate tissue inflammatory response. Here, we have studied the effects of the selective MAGL inhibitors JZL184 and MJN110 and their underlying molecular mechanisms on 3 different experimental models of focal cerebral ischemia.. SHR (spontaneously hypertensive rats) and normotensive WKY (Wistar Kyoto) rats were subject to an intracortical injection of the potent vasoconstrictor endothelin-1, permanent occlusion of a distal segment of the middle cerebral artery via craniectomy, or transient occlusion of the middle cerebral artery by the intraluminal suture method. JZL184 or MJN110 was administered 60 minutes after focal cerebral ischemia. Infarct volumes, hemispheric swelling, and functional outcomes were assessed between days 1 to 28 by magnetic resonance imaging, histology, and behavioral tests.. Pharmacological inhibition of MAGL significantly attenuated infarct volume and hemispheric swelling. MAGL inhibition also ameliorated sensorimotor deficits, suppressed inflammatory response, and decreased the number of degenerating neurons. These beneficial effects of MAGL inhibition were not fully abrogated by selective antagonists of cannabinoid receptors, indicating that the anti-inflammatory effects are caused by inhibition of eicosanoid production rather than by activation of cannabinoid receptors.. Our results suggest that MAGL may contribute to the pathophysiology of focal cerebral ischemia and is thus a promising therapeutic target for the treatment of ischemic stroke. Topics: Animals; Benzodioxoles; Brain Ischemia; Carbamates; Disease Models, Animal; Enzyme Inhibitors; Male; Monoacylglycerol Lipases; Neuroprotective Agents; Piperidines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Stroke; Succinimides | 2018 |
Double Dissociation of Monoacylglycerol Lipase Inhibition and CB1 Antagonism in the Central Amygdala, Basolateral Amygdala, and the Interoceptive Insular Cortex on the Affective Properties of Acute Naloxone-Precipitated Morphine Withdrawal in Rats.
Both CB1 receptor antagonism and agonism, in particular by 2-arachidonyl glycerol (2-AG), have been shown to reduce somatic symptoms of morphine withdrawal (MWD). Here we evaluated the effects of both systemic pretreatment with the monoacylglycerol lipase (MAGL) inhibitor MJN110 (which selectively elevates 2-AG) and central administration of both MJN110 and the CB1 antagonist (AM251) on the affective properties of MWD. Acute MWD induced place aversion occurs when naloxone is administered 24 h following a single exposure to a high dose of morphine. Systemic pretreatment with the MAGL inhibitor, MJN110, prevented the aversive effects of acute MWD by a CB1 receptor-dependent mechanism. Furthermore, in a double dissociation, AM251 infusions into the central amygdala, but MJN110 infusions into the basolateral amygdala, interfered with the naloxone-precipitated MWD induced place aversion. As well, MJN110, but not AM251, infusions into the interoceptive insular cortex (a region known to be activated in acute MWD) also prevented the establishment of the place aversion by a CB1 mechanism of action. These findings reveal the respective sites of action of systemically administered MJN110 and AM251 in regulating the aversive effects of MWD. Topics: Amygdala; Analysis of Variance; Animals; Arachidonic Acids; Cannabinoid Receptor Agonists; Carbamates; Cerebral Cortex; Conditioning, Operant; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Endocannabinoids; Glycerides; Male; Monoacylglycerol Lipases; Morphine; Naloxone; Narcotic Antagonists; Narcotics; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome; Succinimides | 2016 |
The Selective Monoacylglycerol Lipase Inhibitor MJN110 Produces Opioid-Sparing Effects in a Mouse Neuropathic Pain Model.
Serious clinical liabilities associated with the prescription of opiates for pain control include constipation, respiratory depression, pruritus, tolerance, abuse, and addiction. A recognized strategy to circumvent these side effects is to combine opioids with other antinociceptive agents. The combination of opiates with the primary active constituent of cannabis (Δ(9)-tetrahydrocannabinol) produces enhanced antinociceptive actions, suggesting that cannabinoid receptor agonists can be opioid sparing. Here, we tested whether elevating the endogenous cannabinoid 2-arachidonoylglycerol through the inhibition of its primary hydrolytic enzyme monoacylglycerol lipase (MAGL), will produce opioid-sparing effects in the mouse chronic constriction injury (CCI) of the sciatic nerve model of neuropathic pain. The dose-response relationships of i.p. administration of morphine and the selective MAGL inhibitor 2,5-dioxopyrrolidin-1-yl 4-(bis(4-chlorophenyl)methyl)piperazine-1-carboxylate (MJN110) were tested alone and in combination at equieffective doses for reversal of CCI-induced mechanical allodynia and thermal hyperalgesia. The respective ED50 doses (95% confidence interval) of morphine and MJN110 were 2.4 (1.9-3.0) mg/kg and 0.43 (0.23-0.79) mg/kg. Isobolographic analysis of these drugs in combination revealed synergistic antiallodynic effects. Acute antinociceptive effects of the combination of morphine and MJN110 required μ-opioid, CB1, and CB2 receptors. This combination did not reduce gastric motility or produce subjective cannabimimetic effects in the drug discrimination assay. Importantly, combinations of MJN110 and morphine given repeatedly (i.e., twice a day for 6 days) continued to produce antiallodynic effects with no evidence of tolerance. Taken together, these findings suggest that MAGL inhibition produces opiate-sparing events with diminished tolerance, constipation, and cannabimimetic side effects. Topics: Analgesics, Opioid; Animals; Arachidonic Acids; Behavior, Animal; Carbamates; Constriction, Pathologic; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Endocannabinoids; Enzyme Inhibitors; Glycerides; Hyperalgesia; Male; Mice; Mice, Inbred C57BL; Monoacylglycerol Lipases; Morphine; Neuralgia; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Opioid, mu; Succinimides | 2016 |
Effect of selective inhibition of monoacylglycerol lipase (MAGL) on acute nausea, anticipatory nausea, and vomiting in rats and Suncus murinus.
To determine the role of the endocannabinoid, 2-arachodonyl glycerol (2-AG), in the regulation of nausea and vomiting.. We evaluated the effectiveness of the potent selective monoacylglycerol lipase (MAGL) inhibitor, MJN110, which selectively elevates the endocannabinoid 2-AG, to suppress acute nausea and vomiting, as well as anticipatory nausea in rat and shrew models.. The rat gaping models were used to evaluate the potential of MJN110 (5, 10, and 20 mg/kg, intraperitoneally [IP]) to suppress acute nausea produced by LiCl and of MJN110 (10 and 20 mg/kg, IP) to suppress anticipatory nausea elicited by a LiCl-paired context. The potential as well of MJN110 (10 and 20 mg/kg, IP) to suppress vomiting and contextually elicited gaping in the Suncus murinus was evaluated.. MJN110 suppressed acute nausea in rats, LiCl-induced vomiting in shrews and contextually-elicited anticipatory nausea in both rats (accompanied by elevation of 2-AG in the visceral insular cortex) and shrews. These effects were reversed by the CB1 antagonist/inverse agonist, SR141716. The MAGL inhibitor did not modify locomotion at any dose. An activity-based protein profiling analysis of samples of tissue collected from the visceral insular cortex in rats and whole brain tissues in shrews revealed that MJN110 selectively inhibited MAGL and the alternative 2-AG hydrolase, ABHD6.. MAGL inhibition by MJN110 which selectively elevates endogenous 2-AG has therapeutic potential in the treatment of acute nausea and vomiting as well as anticipatory nausea, a distressful symptom that is resistant to currently available treatments. Topics: Animals; Carbamates; Disease Models, Animal; Female; Male; Monoacylglycerol Lipases; Nausea; Rats; Rats, Sprague-Dawley; Shrews; Succinimides; Vomiting | 2015 |