mitotempo has been researched along with Sepsis* in 4 studies
4 other study(ies) available for mitotempo and Sepsis
Article | Year |
---|---|
Selective mitochondrial antioxidant MitoTEMPO reduces renal dysfunction and systemic inflammation in experimental sepsis in rats.
Excess mitochondrial reactive oxygen species (mROS) in sepsis is associated with organ failure, in part by generating inflammation through the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome. We determined the impact of a mitochondrial-targeted antioxidant (MitoTEMPO) on mitochondrial dysfunction in renal proximal tubular epithelial cells, peritoneal immune cell function ex vivo, and organ dysfunction in a rat model of sepsis.. The effects of MitoTEMPO were assessed ex vivo using adenosine triphosphate and lipopolysaccharide-stimulated rat peritoneal immune cells and fresh rat kidney slices exposed to serum from septic rats. We assessed mROS production and phagocytotic capacity (flow cytometry), mitochondrial functionality (multiphoton imaging, respirometry), and NLRP3 inflammasome activation in cell culture. The effect of MitoTEMPO on organ dysfunction was evaluated in a rat model of faecal peritonitis.. MitoTEMPO decreased septic serum-induced mROS (P<0.001) and maintained normal reduced nicotinamide adenine dinucleotide redox state (P=0.02) and mitochondrial membrane potential (P<0.001) in renal proximal tubular epithelial cells ex vivo. In lipopolysaccharide-stimulated peritoneal immune cells, MitoTEMPO abrogated the increase in mROS (P=0.006) and interleukin-1β (IL-1β) (P=0.03) without affecting non-mitochondrial oxygen consumption or the phagocytotic-induced respiratory burst (P>0.05). In vivo, compared with untreated septic animals, MitoTEMPO reduced systemic IL-1β (P=0.01), reduced renal oxidative stress as determined by urine isoprostane levels (P=0.04), and ameliorated renal dysfunction (reduced serum urea (P<0.001) and creatinine (P=0.05).. Reduction of mROS by a mitochondria-targeted antioxidant reduced IL-1β, and protected mitochondrial, cellular, and organ functionality after septic insults. Topics: Animals; Antioxidants; Disease Models, Animal; Inflammasomes; Inflammation; Interleukin-1beta; Kidney Diseases; Male; Membrane Potential, Mitochondrial; Mitochondria; Organophosphorus Compounds; Oxidative Stress; Peritonitis; Piperidines; Rats; Rats, Wistar; Reactive Oxygen Species; Sepsis | 2021 |
Mitochondria-Targeted Antioxidants SkQ1 and MitoTEMPO Failed to Exert a Long-Term Beneficial Effect in Murine Polymicrobial Sepsis.
Topics: Animals; Antioxidants; Disease Models, Animal; Female; Mice; Mitochondria; Organophosphorus Compounds; Piperidines; Plastoquinone; Sepsis | 2017 |
Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury.
Acute kidney injury (AKI) is a complication of sepsis and leads to a high mortality rate. Human and animal studies suggest that mitochondrial dysfunction plays an important role in sepsis-induced multi-organ failure; however, the specific mitochondrial targets damaged during sepsis remain elusive. We used a clinically relevant cecal ligation and puncture (CLP) murine model of sepsis and assessed renal mitochondrial function using high-resolution respirometry, renal microcirculation using intravital microscopy, and renal function. CLP caused a time-dependent decrease in mitochondrial complex I and II/III respiration and reduced ATP. By 4 h after CLP, activity of manganese superoxide dismutase (MnSOD) was decreased by 50% and inhibition was sustained through 36 h. These events were associated with increased mitochondrial superoxide generation. We then evaluated whether the mitochondria-targeted antioxidant Mito-TEMPO could reverse renal mitochondrial dysfunction and attenuate sepsis-induced AKI. Mito-TEMPO (10 mg/kg) given at 6 h post-CLP decreased mitochondrial superoxide levels, protected complex I and II/III respiration, and restored MnSOD activity by 18 h. Mito-TEMPO also improved renal microcirculation and glomerular filtration rate. Importantly, even delayed therapy with a single dose of Mito-TEMPO significantly increased 96-h survival rate from 40% in untreated septic mice to 80%. Thus, sepsis causes sustained inactivation of three mitochondrial targets that can lead to increased mitochondrial superoxide. Importantly, even delayed therapy with Mito-TEMPO alleviated kidney injury, suggesting that it may be a promising approach to treat septic AKI. Topics: Acute Kidney Injury; Adenosine Triphosphate; Animals; Antioxidants; Body Temperature Regulation; Cell Respiration; Disease Models, Animal; Electron Transport Chain Complex Proteins; Electron Transport Complex I; Electron Transport Complex II; Electron Transport Complex III; Electron Transport Complex IV; Kidney; Male; Mice; Mice, Inbred C57BL; Microcirculation; Mitochondria; Organophosphorus Compounds; Oxidative Stress; Piperidines; Renal Circulation; Sepsis; Superoxide Dismutase; Time Factors | 2014 |
Targeting mitochondrial oxidants may facilitate recovery of renal function during infant sepsis.
Sepsis-induced acute kidney injury (SAKI) is a frequent complication of infant sepsis that approximately doubles the mortality rate. The poor prognosis of these patients is a result of care that is mainly supportive, nontargeted, and usually begun only after symptoms of the systemic inflammatory response syndrome are observed. Preclinical studies from relevant rodent models of SAKI suggest that mitochondria-targeted antioxidants may be a new mode of therapy that could promote recovery. Topics: Acute Kidney Injury; Animals; Antioxidants; Disease Models, Animal; Humans; Infant; Mice; Mitochondria; Organophosphorus Compounds; Piperidines; Rats; Sepsis | 2014 |