mitotempo and Chagas-Disease

mitotempo has been researched along with Chagas-Disease* in 2 studies

Other Studies

2 other study(ies) available for mitotempo and Chagas-Disease

ArticleYear
Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles.
    Free radical biology & medicine, 2019, Volume: 130

    Chagas disease is caused by the hemoflagellate protozoa Trypanosoma cruzi and is one of the most important neglected tropical diseases, especially in Latin American countries, where there is an association between low-income populations and mortality. The nitroderivatives used in current chemotherapy are far from ideal and present severe limitations, justifying the continuous search for alternative drugs. Since the1990s, our group has been investigating the trypanocidal activity of natural naphthoquinones and their derivatives, and three naphthoimidazoles (N1, N2 and N3) derived from β-lapachone were found to be most effective in vitro. Analysis of their mechanism of action via cellular, molecular and proteomic approaches indicates that the parasite mitochondrion contains one of the primary targets of these compounds, trypanothione synthetase (involved in trypanothione production), which is overexpressed after treatment with these compounds. Here, we further evaluated the participation of the mitochondria and reactive oxygen species (ROS) in the anti-T. cruzi action of naphthoimidazoles. Preincubation of epimastigotes and trypomastigotes with antioxidants (α-tocopherol and urate) strongly protected the parasites from the trypanocidal effect of naphthoimidazoles, decreasing the ROS levels produced and reverting the mitochondrial swelling phenotype. The addition of pro-oxidants (menadione and H

    Topics: Animals; Chagas Disease; Humans; Hydrogen Peroxide; Imidazoles; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Swelling; Naphthoquinones; Organophosphorus Compounds; Piperidines; Proteomics; Reactive Oxygen Species; Trypanocidal Agents; Trypanosoma cruzi

2019
Heme modulates Trypanosoma cruzi bioenergetics inducing mitochondrial ROS production.
    Free radical biology & medicine, 2017, Volume: 108

    Trypanosoma cruzi is the causative agent of Chagas disease and has a single mitochondrion, an organelle responsible for ATP production and the main site for the formation of reactive oxygen species (ROS). T. cruzi is an obligate intracellular parasite with a complex life cycle that alternates between vertebrate and invertebrate hosts, therefore the development of survival strategies and morphogenetic adaptations to deal with the various environments is mandatory. Over the years our group has been studying the vector-parasite interactions using heme as a physiological oxidant molecule that triggered epimastigote proliferation however, the source of ROS induced by heme remained unknown. In the present study we demonstrate the involvement of heme in the parasite mitochondrial metabolism, decreasing oxygen consumption leading to increased mitochondrial ROS and membrane potential. First, we incubated epimastigotes with carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), an uncoupler of oxidative phosphorylation, which led to decreased ROS formation and parasite proliferation, even in the presence of heme, correlating mitochondrial ROS and T. cruzi survival. This hypothesis was confirmed after the mitochondria-targeted antioxidant ((2-(2,2,6,6 Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) decreased both heme-induced ROS and epimastigote proliferation. Furthermore, heme increased the percentage of tetramethylrhodamine methyl ester (TMRM) positive parasites tremendously-indicating the hyperpolarization and increase of potential of the mitochondrial membrane (ΔΨm). Assessing the mitochondrial functional metabolism, we observed that in comparison to untreated parasites, heme-treated epimastigotes decreased their oxygen consumption, and increased the complex II-III activity. These changes allowed the electron flow into the electron transport system, even though the complex IV (cytochrome c oxidase) activity decreased significantly, showing that heme-induced mitochondrial ROS appears to be a consequence of the enhanced mitochondrial physiological modulation. Finally, the parasites that were submitted to high concentrations of heme presented no alterations in the ultrastructure. Consequently, our results suggest that heme released by the insect vector after the blood meal, modify epimastigote mitochondrial physiology to increase ROS as a metabolic mechanism to maintain epimastigote survival and proliferation.

    Topics: Animals; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cell Growth Processes; Cells, Cultured; Chagas Disease; Electron Transport; Electron Transport Complex IV; Energy Metabolism; Heme; Humans; Life Cycle Stages; Membrane Potential, Mitochondrial; Mitochondria; Organophosphorus Compounds; Oxygen Consumption; Piperidines; Reactive Oxygen Species; Rhodamines; Trypanosoma cruzi

2017