minocycline has been researched along with Wet-Macular-Degeneration* in 2 studies
2 other study(ies) available for minocycline and Wet-Macular-Degeneration
Article | Year |
---|---|
VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV.
Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD), the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR) 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV), a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP). Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+), CD45(+) or Iba1(+) cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF) and VEGF-B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1) delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101) had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1(gfp/gfp) and CX3CR1(gfp/+) mice. Minocycline treatment caused a significant increase in lectin(+) cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia/macrophage appears to be a compelling therapeutic strategy to control CNV and treat wet AMD. Topics: Animals; Antibodies, Monoclonal, Murine-Derived; Cell Movement; Choroidal Neovascularization; Disease Models, Animal; Humans; Injections, Intraperitoneal; Laser Capture Microdissection; Lasers; Macrophages; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microglia; Minocycline; Retina; Tissue Culture Techniques; Vascular Endothelial Growth Factor Receptor-1; Vascular Endothelial Growth Factor Receptor-2; Wet Macular Degeneration | 2013 |
Minocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage microglial: inhibition as a potential therapeutic strategy.
Hemorrhage under the neural retina (subretinal hemorrhage) can occur in the context of age-related macular degeneration and induce subsequent photoreceptor cell death and permanent vision loss. Current treatments with the objective of removing or displacing the hemorrhage are invasive and of mixed efficacy. We created a mouse model of subretinal hemorrhage to characterize the inflammatory responses and photoreceptor degeneration that occur in the acute aftermath of hemorrhage. It was observed that microglial infiltration into the outer retina commences as early as 6 hours after hemorrhage. Inflammatory cells progressively accumulate in the outer nuclear layer concurrently with photoreceptor degeneration and apoptosis. Administration of minocycline, an inhibitor of microglial activation, decreased microglial expression of chemotactic cytokines in vitro and reduced microglial infiltration and photoreceptor cell loss after subretinal hemorrhage in vivo. Inflammatory responses and photoreceptor atrophy occurred after subretinal hemorrhage, however, the degree of response and atrophy were similar between C3-deficient and C3-sufficient mice, indicating a limited role for complement-mediated processes. Our data indicate a role for inflammatory responses in driving photoreceptor cell loss in subretinal hemorrhage, and it is proposed that microglial inhibition may be beneficial in the treatment of subretinal hemorrhage. Topics: Animals; Apoptosis; Cell Adhesion Molecules; Chemokines; Cytokines; Macrophages; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microglia; Minocycline; Photoreceptor Cells, Vertebrate; Retinal Hemorrhage; Retinitis; Wet Macular Degeneration | 2011 |