minocycline and Subarachnoid-Hemorrhage

minocycline has been researched along with Subarachnoid-Hemorrhage* in 8 studies

Other Studies

8 other study(ies) available for minocycline and Subarachnoid-Hemorrhage

ArticleYear
The protective effect of low-dose minocycline on brain microvascular ultrastructure in a rodent model of subarachnoid hemorrhage.
    Histochemistry and cell biology, 2023, Volume: 159, Issue:1

    The multifaceted nature of subarachnoid hemorrhage (SAH) pathogenesis is poorly understood. To date, no pharmacological agent has been found to be efficacious for the prevention of brain injury when used for acute SAH intervention. This study was undertaken to evaluate the beneficial effects of low-dose neuroprotective agent minocycline on brain microvascular ultrastructures that have not been studied in detail. We studied SAH brain injury using an in vivo prechiasmatic subarachnoid hemorrhage rodent model. We analyzed the qualitative and quantitative ultrastructural morphology of capillaries and surrounding neuropil in the rodent brains with SAH and/or minocycline administration. Here, we report that low-dose minocycline (1 mg/kg) displayed protective effects on capillaries and surrounding cells from significant SAH-induced changes. Ultrastructural morphology analysis revealed also that minocycline stopped endothelial cells from abnormal production of vacuoles and vesicles that compromise blood-brain barrier (BBB) transcellular transport. The reported ultrastructural abnormalities as well as neuroprotective effects of minocycline during SAH were not directly mediated by inhibition of MMP-2, MMP-9, or EMMPRIN. However, SAH brain tissue treated with minocycline was protected from development of other morphological features associated with oxidative stress and the presence of immune cells in the perivascular space. These data advance the knowledge on the effect of SAH on brain tissue ultrastructure in an SAH rodent model and the neuroprotective effect of minocycline when administered in low doses.

    Topics: Animals; Blood-Brain Barrier; Brain; Brain Injuries; Disease Models, Animal; Endothelial Cells; Minocycline; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Rodentia; Subarachnoid Hemorrhage

2023
Minocycline Attenuates Microglia/Macrophage Phagocytic Activity and Inhibits SAH-Induced Neuronal Cell Death and Inflammation.
    Neurocritical care, 2022, Volume: 37, Issue:2

    Neuroprotective treatment strategies aiming at interfering with either inflammation or cell death indicate the importance of these mechanisms in the development of brain injury after subarachnoid hemorrhage (SAH). This study was undertaken to evaluate the influence of minocycline on microglia/macrophage cell activity and its neuroprotective and anti-inflammatory impact 14 days after aneurismal SAH in mice.. Endovascular filament perforation was used to induce SAH in mice. SAH + vehicle-operated mice were used as controls for SAH vehicle-treated mice and SAH + minocycline-treated mice. The drug administration started 4 h after SAH induction and was daily repeated until day 7 post SAH and continued until day 14 every second day. Brain cryosections were immunolabeled for Iba1 to detect microglia/macrophages and NeuN to visualize neurons. Phagocytosis assay was performed to determine the microglia/macrophage activity status. Apoptotic cells were stained using terminal deoxyuridine triphosphate nick end labeling. Real-time quantitative polymerase chain reaction was used to estimate cytokine gene expression.. We observed a significantly reduced phagocytic activity of microglia/macrophages accompanied by a lowered spatial interaction with neurons and reduced neuronal apoptosis achieved by minocycline administration after SAH. Moreover, the SAH-induced overexpression of pro-inflammatory cytokines and neuronal cell death was markedly attenuated by the compound.. Minocycline treatment may be implicated as a therapeutic approach with long-term benefits in the management of secondary brain injury after SAH in a clinically relevant time window.

    Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Brain Injuries; Cell Death; Cytokines; Inflammation; Macrophages; Mice; Microglia; Minocycline; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Subarachnoid Hemorrhage

2022
Minocycline Protects Against NLRP3 Inflammasome-Induced Inflammation and P53-Associated Apoptosis in Early Brain Injury After Subarachnoid Hemorrhage.
    Molecular neurobiology, 2016, Volume: 53, Issue:4

    Minocycline has beneficial effects in early brain injury (EBI) following subarachnoid hemorrhage (SAH); however, the molecular mechanisms underlying these effects have not been clearly identified. This study was undertaken to determine the influence of minocycline on inflammation and neural apoptosis and the possible mechanisms of these effects in early brain injury following subarachnoid hemorrhage. SAH was induced by the filament perforation model of SAH in male Sprague-Dawley rats. Minocycline or vehicle was given via an intraperitoneal injection 1 h after SAH induction. Minocycline treatment markedly attenuated brain edema secondary to blood-brain barrier (BBB) dysfunction by inhibiting NLRP3 inflammasome activation, which controls the maturation and release of pro-inflammatory cytokines, especially interleukin-1β (IL-1β). Minocycline treatment also markedly reduced the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells. To further identify the potential mechanisms, we demonstrated that minocycline increased Bcl2 expression and reduced the protein expression of P53, Bax, and cleaved caspase-3. In addition, minocycline reduced the cortical levels of reactive oxygen species (ROS), which are closely related to both NLRP3 inflammasome and P53 expression. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury following SAH. Minocycline's anti-inflammatory and anti-apoptotic effect may involve the reduction of ROS. Minocycline treatment may exhibit important clinical potentials in the management of SAH.

    Topics: Animals; Apoptosis; Blood-Brain Barrier; Brain Injuries; Cell Nucleus; Inflammasomes; Inflammation; Interleukin-1beta; Male; Microglia; Minocycline; Neuroprotective Agents; NLR Family, Pyrin Domain-Containing 3 Protein; Protein Transport; Proto-Oncogene Proteins c-bcl-2; Rats, Sprague-Dawley; Reactive Oxygen Species; Subarachnoid Hemorrhage; Transcription Factor RelA; Tumor Suppressor Protein p53; Water

2016
Potential contribution of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 to blood-brain barrier disruption and brain edema after experimental subarachnoid hemorrhage.
    Journal of molecular neuroscience : MN, 2012, Volume: 48, Issue:1

    The current research aimed to investigate the role of hypoxia-inducible factor-1α (HIF-1α), aquaporin-4 (AQP-4), and matrix metalloproteinase-9 (MMP-9) in blood-brain barrier (BBB) dysfunction and cerebral edema formation in a rat subarachnoid hemorrhage (SAH) model. The SAH model was induced by injection of 0.3 ml fresh arterial, non-heparinized blood into the prechiasmatic cistern in 20 s. Anti-AQP-4 antibody, minocycline (an inhibitor of MMP-9), or 2-methoxyestradiol (an inhibitor of HIF-1α), was administered intravenously at 2 and 24 h after SAH. Brain samples were extracted at 48 h after SAH and examined for protein expressions, BBB impairment, and brain edema. Following SAH, remarkable edema and BBB extravasations were observed. Compared with the control group, the SAH animals have significantly upregulated expressions of HIF-1α, AQP-4, and MMP-9, in addition to decreased amounts of laminin and tight junction proteins. Brain edema was repressed after inhibition of AQP-4, MMP-9, or HIF-1α. Although BBB permeability was also ameliorated after inhibition of either HIF-1α or MMP-9, it was not modulated after inhibition of AQP-4. Inhibition of MMP-9 reversed the loss of laminin. Finally, inhibition of HIF-1α significantly suppressed the level of AQP-4 and MMP-9, which could induce the expression of laminin and tight junction proteins. Our results suggest that HIF-1α plays a role in brain edema formation and BBB disruption via a molecular signaling pathway involving AQP-4 and MMP-9. Pharmacological intervention of this pathway in patients with SAH may provide a novel therapeutic strategy for early brain injury.

    Topics: 2-Methoxyestradiol; Animals; Aquaporin 4; Blood-Brain Barrier; Brain Edema; Disease Models, Animal; Estradiol; Hypoxia-Inducible Factor 1, alpha Subunit; Laminin; Male; Matrix Metalloproteinase 9; Matrix Metalloproteinase Inhibitors; Minocycline; Occludin; Rats; Rats, Sprague-Dawley; Subarachnoid Hemorrhage; Tubulin Modulators; Zonula Occludens-1 Protein

2012
Pharmacological stabilization of intracranial aneurysms in mice: a feasibility study.
    Stroke, 2012, Volume: 43, Issue:9

    An increasing number of unruptured intracranial aneurysms are being detected, partly due to the increased use of brain imaging techniques. Pharmacological stabilization of aneurysms for the prevention of aneurysmal rupture could potentially be an attractive alternative approach to clipping or coiling in patients with unruptured intracranial aneurysms. We have developed a mouse model of intracranial aneurysm that recapitulates key features of intracranial aneurysms. In this model, subarachnoid hemorrhage from aneurysmal rupture causes neurological symptoms that can be easily detected by a simple neurological examination. Using this model, we tested whether anti-inflammatory agents such as tetracycline derivatives, or a selective inhibitor of matrix metalloproteinases-2 and -9 (SB-3CT), can prevent the rupture of intracranial aneurysms.. Aneurysms were induced by a combination of induced hypertension and a single injection of elastase into the cerebrospinal fluid in mice. Treatment with minocycline, doxycycline, or SB-3CT was started 6 days after aneurysm induction. Aneurysmal rupture was detected by neurological symptoms and confirmed by the presence of intracranial aneurysms with subarachnoid hemorrhage.. Minocycline and doxycycline significantly reduced rupture rates (vehicle versus doxycycline=80% versus 35%, P<0.05; vehicle versus minocycline=73% versus 24%, P<0.05) without affecting the overall incidence of aneurysms. However, SB-3CT did not affect the rupture rate (62% versus 55%, P=0.53).. Our data established the feasibility of using a mouse model of intracranial aneurysm to test pharmacological stabilization of aneurysms. Tetracycline derivatives could be potentially effective in preventing aneurysmal rupture.

    Topics: Aneurysm, Ruptured; Animals; Blood Pressure; Disease Models, Animal; Doxycycline; Feasibility Studies; Gelatinases; Heterocyclic Compounds, 1-Ring; Intracranial Aneurysm; Male; Matrix Metalloproteinase Inhibitors; Mice; Mice, Inbred C57BL; Minocycline; Neurologic Examination; Protease Inhibitors; Subarachnoid Hemorrhage; Sulfones; Survival Analysis; Tetracyclines

2012
Mechanisms of early brain injury after SAH: matrix metalloproteinase 9.
    Acta neurochirurgica. Supplement, 2011, Volume: 110, Issue:Pt 1

    Subarachnoid hemorrhage (SAH) is an important cause of death and disability worldwide. To date, there is not a definitive treatment that completely prevents brain injury after SAH. Recently, early brain injury (EBI) has been pointed out to be the primary cause of mortality in SAH patients. Apoptosis that occurs in neuronal tissues and cerebral vasculature after SAH plays an essential role in EBI. Matrix metalloproteinase 9 (MMP-9) has been found to increase in many cerebral vascular diseases. There have been reports that MMP-9 can mediate apoptosis, which called anoikis in cerebral ischemia models, through cleaving main components of the extracellular matrix (ECM), especially laminin. Therefore, minocycline, which has been found to inhibit MMP-9, may be protective to brain injury after SAH. We based our hypothesis on the fact that SAH possesses some aspects that are similar to those of cerebral ischemia. It is conceivable that MMP-9 may also be involved in the pathological process of EBI after SAH, and minocycline can relieve anoikis and improve EBI after SAH.

    Topics: Animals; Brain Injuries; Gene Expression Regulation, Enzymologic; Humans; Laminin; Matrix Metalloproteinase 9; Minocycline; Subarachnoid Hemorrhage

2011
Protection of minocycline on early brain injury after subarachnoid hemorrhage in rats.
    Acta neurochirurgica. Supplement, 2011, Volume: 110, Issue:Pt 1

    Minocycline has been shown to be neuroprotective in cerebral ischemia and in other models of brain injury. Our goal is to observe the protection of minocycline on EBI after SAH and the mechanism. 48 adult male SD rats were randomly divided into four groups: the sham-operated group, SAH group, vehicle group (SAH+normal sodium), and minocycline group (SAH+minocycline). The SAH model was induced by injecting 300 μl of autologous arterial blood into the prechiasmatic cistern. Expressions of MMP-9 in the hippocampus were examined at 24 h by western blot and zymography. Western blot and zymography showed that the expression of total and active MMP-9 increased dramatically at 24 h after SAH compared with that of the sham group (P<0.01). The clinical assessments got a lower score than that of the sham-operated group. After treated with minocycline, the expression of MMP-9 decreased significantly (P<0.01 vs. vehicle group), and the clinical assessments improved. We conclude that minocycline can protect EBI after SAH, which may be related to the mechanism of inhibiting the expression of MMP-9 in the hippocampus.

    Topics: Analysis of Variance; Animals; Brain Injuries; Disease Models, Animal; Gene Expression Regulation, Enzymologic; Hippocampus; Male; Matrix Metalloproteinase 9; Minocycline; Neurologic Examination; Rats; Rats, Sprague-Dawley; Subarachnoid Hemorrhage

2011
Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats.
    Journal of neurotrauma, 2011, Volume: 28, Issue:12

    Subarachnoid hemorrhage (SAH) results in significant long-lasting cognitive dysfunction. Therefore, evaluating acute and long-term outcomes after therapeutic intervention is important for clinical translation. The aim of this study was to use minocycline, a known neuroprotectant agent, to evaluate the long-term benefits in terms of neurobehavior and neuropathology after experimental SAH in rats, and to determine which neurobehavioral test would be effective for long-term evaluation. SAH was induced by endovascular perforation in adult male Sprague-Dawley rats (n=118). The animals were treated with intraperitoneal injection of minocycline (45 mg/kg or 135 mg/kg) or vehicle 1 h after SAH induction. In the short-term, animals were euthanized at 24 and 72 h for evaluation of neurobehavior, brain water content, and matrix metalloproteinase (MMP) activity. In the long-term, neurobehavior was evaluated at days 21-28 post-SAH, and histopathological analysis was done at day 28. High-dose but not low-dose minocycline reduced brain water content at 24 h, and therefore only the high-dose regimen was used for further evaluation, which reduced MMP-9 activity at 24 h. Further, high-dose minocycline improved spatial memory and attenuated neuronal loss in the hippocampus and cortex. The rotarod, T-maze, and water maze tests, but not the inclined plane test, detected neurobehavioral deficits in SAH rats at days 21-28. This study demonstrates that minocycline attenuates long-term functional and morphological outcomes after endovascular perforation-induced SAH. Long-term neurobehavioral assessments using the rotarod, T-maze, and water maze tests could be useful to evaluate the efficacy of therapeutic intervention after experimental SAH.

    Topics: Animals; Cerebral Arteries; Endovascular Procedures; Injections, Intraperitoneal; Male; Memory Disorders; Minocycline; Random Allocation; Rats; Rats, Sprague-Dawley; Recovery of Function; Subarachnoid Hemorrhage

2011