minocycline has been researched along with Persian-Gulf-Syndrome* in 2 studies
2 other study(ies) available for minocycline and Persian-Gulf-Syndrome
Article | Year |
---|---|
Minocycline alleviates Gulf War Illness rats via altering gut microbiome, attenuating neuroinflammation and enhancing hippocampal neurogenesis.
Accumulating evidences suggest that deficits in neurogenesis, chronic inflammation and gut microbiome dysregulation contribute to the pathophysiology of Gulf War Illness (GWI). Minocycline has been demonstrated to be a potent neuroprotective agent and could regulate neuroinflammation. The present study intends to investigate whether the treatment of minocycline maintains better cognition and mood function in a rat model of GWI and the potential mechanism. Rats received 28 days of GWI-related chemical exposure and restraint stress, along with daily minocycline or vehicle treatment. Cognitive and mood function, neuroinflammation, neurogenesis and gut microbiota were detected. We found that minocycline treatment induces better cognitive and mood function in the GWI rat model, as indicated by open-field test, elevated plus maze test, novel object recognition test and forced swim test. Moreover, minocycline treatment reversed the altered gut microbiome, neuroinflammation and the decreased hippocampal neurogenesis of rats with GWI. Taken together, our study indicated that minocycline treatment exerts better cognitive and mood function in GWI rat model, which is possibly related to gut microbiota remodeling, restrained inflammation and enhanced hippocampal neurogenesis. These results may establish minocycline as a potential prophylactic or therapeutic agent for the treatment of GWI. Topics: Affect; Animals; Behavior, Animal; Cognition; Disease Models, Animal; Gastrointestinal Microbiome; Hippocampus; Male; Minocycline; Motor Activity; Neurogenesis; Neuroinflammatory Diseases; Neuroprotective Agents; Persian Gulf Syndrome; Rats; Rats, Sprague-Dawley; Restraint, Physical; Stress, Psychological | 2021 |
Corticosterone primes the neuroinflammatory response to DFP in mice: potential animal model of Gulf War Illness.
Gulf War Illness (GWI) is a multi-symptom disorder with features characteristic of persistent sickness behavior. Among conditions encountered in the Gulf War (GW) theater were physiological stressors (e.g., heat/cold/physical activity/sleep deprivation), prophylactic treatment with the reversible AChE inhibitor, pyridostigmine bromide (PB), the insect repellent, N,N-diethyl-meta-toluamide (DEET), and potentially the nerve agent, sarin. Prior exposure to the anti-inflammatory glucocorticoid, corticosterone (CORT), at levels associated with high physiological stress, can paradoxically prime the CNS to produce a robust proinflammatory response to neurotoxicants and systemic inflammation; such neuroinflammatory effects can be associated with sickness behavior. Here, we examined whether CORT primed the CNS to mount neuroinflammatory responses to GW exposures as a potential model of GWI. Male C57BL/6 mice were treated with chronic (14 days) PB/ DEET, subchronic (7-14 days) CORT, and acute exposure (day 15) to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. DFP alone caused marked brain-wide neuroinflammation assessed by qPCR of tumor necrosis factor-α, IL6, chemokine (C-C motif) ligand 2, IL-1β, leukemia inhibitory factor, and oncostatin M. Pre-treatment with high physiological levels of CORT greatly augmented (up to 300-fold) the neuroinflammatory responses to DFP. Anti-inflammatory pre-treatment with minocycline suppressed many proinflammatory responses to CORT+DFP. Our findings are suggestive of a possible critical, yet unrecognized interaction between the stressor/environment of the GW theater and agent exposure(s) unique to this war. Such exposures may in fact prime the CNS to amplify future neuroinflammatory responses to pathogens, injury, or toxicity. Such occurrences could potentially result in the prolonged episodes of sickness behavior observed in GWI. Gulf War (GW) veterans were exposed to stressors, prophylactic medicines and, potentially, nerve agents in theater. Subsequent development of GW Illness, a persistent multi-symptom disorder with features characteristic of sickness behavior, may be caused by priming of the CNS resulting in exaggerated neuroinflammatory responses to pathogens/insults. Nerve agent, diisopropyl fluorophosphate (DFP), produced a neuroinflammatory response that was exacerbated by pre-treatment with levels of corticosterone simulating heightened stressor conditions. While prophylactic trea Topics: Animals; Anti-Inflammatory Agents; Chemical Warfare Agents; Cholinesterase Inhibitors; Corticosterone; DEET; Disease Models, Animal; Dose-Response Relationship, Drug; Encephalitis; Insect Repellents; Isoflurophate; Male; Mice; Mice, Inbred C57BL; Minocycline; Persian Gulf Syndrome | 2015 |