minocycline and Mitochondrial-Diseases

minocycline has been researched along with Mitochondrial-Diseases* in 2 studies

Other Studies

2 other study(ies) available for minocycline and Mitochondrial-Diseases

ArticleYear
Tigecycline-induced inhibition of mitochondrial DNA translation may cause lethal mitochondrial dysfunction in humans.
    Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2018, Volume: 24, Issue:4

    A 65-year-old patient developed an unexplained and ultimately lethal metabolic acidosis under prolonged treatment with tigecycline. Tigecycline is known to have a selective inhibitory effect on eukaryotic mitochondrial translation. The underlying molecular mechanisms of the metabolic acidosis in this patient were explored.. Oxidative phosphorylation system (OXPHOS) analysis, blue native polyacrylamide gel electrophoresis followed by in-gel activity staining in mitochondria, molecular analysis of mitochondrial DNA (mtDNA) for genomic rearrangements and sequencing of the rRNA genes was performed on the subject's skeletal muscle.. OXPHOS analysis revealed a combined deficiency of the complexes I, III, IV and V, with a preserved function of complex II (encoded by nuclear DNA), thus demonstrating a defective mtDNA translation. There were no known underlying mitochondrial genetic defects. The patient had a (m.1391T>A) variant within the 12SrRNA gene in heteroplasmy (50-60%).. This patient developed an ultimately lethal mitochondrial toxicity while receiving prolonged treatment with tigecycline, which was caused by a defective translation of the mtDNA. Tigecycline is known to suppress eukaryotic mitochondrial DNA translation, but until now this effect has been considered to be clinically insignificant. The observations in this patient suggest a clinically significant mitochondrial toxicity of tigecycline in this patient, and warrant further investigation.

    Topics: Acidosis; Aged; Anti-Bacterial Agents; Fatal Outcome; Female; Humans; Minocycline; Mitochondria; Mitochondrial Diseases; Protein Biosynthesis; Tigecycline

2018
Minocycline and N-methyl-4-isoleucine cyclosporin (NIM811) mitigate storage/reperfusion injury after rat liver transplantation through suppression of the mitochondrial permeability transition.
    Hepatology (Baltimore, Md.), 2008, Volume: 47, Issue:1

    Graft failure after liver transplantation may involve mitochondrial dysfunction. We examined whether prevention of mitochondrial injury would improve graft function. Orthotopic rat liver transplantation was performed after 18 hours' cold storage in University of Wisconsin solution and treatment with vehicle, minocycline, tetracycline, or N-methyl-4-isoleucine cyclosporin (NIM811) of explants and recipients. Serum alanine aminotransferase (ALT), necrosis, and apoptosis were assessed 6 hours after implantation. Mitochondrial polarization and cell viability were assessed by intravital microscopy. Respiration and the mitochondrial permeability transition (MPT) were assessed in isolated rat liver mitochondria. After transplantation with vehicle or tetracycline, ALT increased to 5242 U/L and 4373 U/L, respectively. Minocycline and NIM811 treatment decreased ALT to 2374 U/L and 2159 U/L, respectively (P < 0.01). Necrosis and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) also decreased from 21.4% and 21 cells/field, respectively, after vehicle to 10.1% and 6 cells/field after minocycline and to 8.7% and 5.2 cells/field after NIM811 (P < 0.05). Additionally, minocycline decreased caspase-3 activity in graft homogenates (P < 0.05). Long-term graft survival was 27% and 33%, respectively, after vehicle and tetracycline treatment, which increased to 60% and 70% after minocycline and NIM811 (P < 0.05). In isolated mitochondria, minocycline and NIM811 but not tetracycline blocked the MPT. Minocycline blocked the MPT by decreasing mitochondrial Ca(2+) uptake, whereas NIM811 blocks by interaction with cyclophilin D. Intravital microscopy showed that minocycline and NIM811 preserved mitochondrial polarization and cell viability after transplantation (P < 0.05).. Minocycline and NIM811 attenuated graft injury after rat liver transplantation and improved graft survival. Minocycline and/or NIM811 might be useful clinically in hepatic surgery and transplantation.

    Topics: Adenosine Diphosphate; Alanine Transaminase; Animals; Anti-Bacterial Agents; Apoptosis; Calcium; Cyclosporine; Graft Survival; Liver; Liver Transplantation; Male; Minocycline; Mitochondria; Mitochondrial Diseases; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Necrosis; Rats; Rats, Inbred Lew; Reperfusion Injury; Tetracycline

2008