minocycline and Ischemic-Stroke

minocycline has been researched along with Ischemic-Stroke* in 8 studies

Other Studies

8 other study(ies) available for minocycline and Ischemic-Stroke

ArticleYear
After Ischemic Stroke, Minocycline Promotes a Protective Response in Neurons via the RNA-Binding Protein HuR, with a Positive Impact on Motor Performance.
    International journal of molecular sciences, 2023, May-29, Volume: 24, Issue:11

    Ischemic stroke is the most common cause of adult disability and one of the leading causes of death worldwide, with a serious socio-economic impact. In the present work, we used a new thromboembolic model, recently developed in our lab, to induce focal cerebral ischemic (FCI) stroke in rats without reperfusion. We analyzed selected proteins implicated in the inflammatory response (such as the RNA-binding protein HuR, TNFα, and HSP70) via immunohistochemistry and western blotting techniques. The main goal of the study was to evaluate the beneficial effects of a single administration of minocycline at a low dose (1 mg/kg intravenously administered 10 min after FCI) on the neurons localized in the penumbra area after an ischemic stroke. Furthermore, given the importance of understanding the crosstalk between molecular parameters and motor functions following FCI, motor tests were also performed, such as the Horizontal Runway Elevated test, CatWalk™ XT, and Grip Strength test. Our results indicate that a single administration of a low dose of minocycline increased the viability of neurons and reduced the neurodegeneration caused by ischemia, resulting in a significant reduction in the infarct volume. At the molecular level, minocycline resulted in a reduction in TNFα content coupled with an increase in the levels of both HSP70 and HuR proteins in the penumbra area. Considering that both HSP70 and TNF-α transcripts are targeted by HuR, the obtained results suggest that, following FCI, this RNA-binding protein promotes a protective response by shifting its binding towards HSP70 instead of TNF-α. Most importantly, motor tests showed that reduced inflammation in the brain damaged area after minocycline treatment directly translated into a better motor performance, which is a fundamental outcome when searching for new therapeutic options for clinical practice.

    Topics: Animals; Brain Ischemia; Disease Models, Animal; Ischemic Stroke; Minocycline; Neurons; Rats; Rats, Sprague-Dawley; Stroke; Tumor Necrosis Factor-alpha

2023
Characterization of Astrocytes in the Minocycline-Administered Mouse Photothrombotic Ischemic Stroke Model.
    Neurochemical research, 2022, Volume: 47, Issue:9

    Astrocytes, together with microglia, play important roles in the non-infectious inflammation and scar formation at the brain infarct during ischemic stroke. After ischemia occurs, these become highly reactive, accumulate at the infarction, and release various inflammatory signaling molecules. The regulation of astrocyte reactivity and function surrounding the infarction largely depends on intercellular communication with microglia. However, the mechanisms involved remain unclear. Furthermore, recent molecular biological studies have revealed that astrocytes are highly divergent under both resting and reactive states, whereas it has not been well reported how the communication between microglia and astrocytes affects astrocyte divergency during ischemic stroke. Minocycline, an antibiotic that reduces microglial activity, has been used to examine the functional roles of microglia in mice. In this study, we used a mouse photothrombotic ischemic stroke model to examine the characteristics of astrocytes after the administration of minocycline during ischemic stroke. Minocycline increased astrocyte reactivity and affected the localization of astrocytes in the penumbra region. Molecular characterization revealed that the induced expression of mRNA encoding the fatty acid binding protein 7 (FABP7) by photothrombosis was enhanced by the minocycline administration. Meanwhile, minocycline did not significantly affect the phenotype or class of astrocytes. The expression of Fabp7 mRNA was well correlated with that of tumor-necrosis factor α (TNFα)-encoding Tnf mRNA, indicating that a correlated expression of FABP7 from astrocytes and TNFα is suppressed by microglial activity.

    Topics: Animals; Astrocytes; Brain Infarction; Disease Models, Animal; Ischemic Stroke; Mice; Microglia; Minocycline; RNA, Messenger; Stroke; Tumor Necrosis Factor-alpha

2022
Neuroprotective effects of minocycline and KML29, a potent inhibitor of monoacylglycerol lipase, in an experimental stroke model: a small-animal positron emission tomography study.
    Theranostics, 2021, Volume: 11, Issue:19

    Hypoxia caused by ischemia induces acidosis and neuroexcitotoxicity, resulting in neuronal death in the central nervous system (CNS). Monoacylglycerol lipase (MAGL) is a modulator of 2-arachidonoylglycerol (2-AG), which is involved in retrograde inhibition of glutamate release in the endocannabinoid system. In the present study, we used positron emission tomography (PET) to monitor MAGL-positive neurons and neuroinflammation in the brains of ischemic rats. Additionally, we performed PET imaging to evaluate the neuroprotective effects of an MAGL inhibitor in an ischemic injury model.

    Topics: Animals; Arachidonic Acids; Benzodioxoles; Brain; Brain Ischemia; Carbon Radioisotopes; Cell Hypoxia; Disease Models, Animal; Endocannabinoids; Glycerides; Infarction, Middle Cerebral Artery; Ischemic Stroke; Male; Minocycline; Monoacylglycerol Lipases; Neuroprotective Agents; Piperidines; Positron-Emission Tomography; Rats; Rats, Sprague-Dawley; Stroke; Tomography, X-Ray Computed

2021
Minocycline exhibits synergism with conditioned medium of bone marrow mesenchymal stem cells against ischemic stroke.
    Journal of tissue engineering and regenerative medicine, 2021, Volume: 15, Issue:3

    Several lines of evidence show that a conditioned medium of bone marrow mesenchymal stem cells (BM-MSCcm) improve functional recovery after ischemic stroke but do not reduce ischemic lesions. It is important to develop a treatment strategy that can exhibit a synergistic effect with BM-MSCcm against ischemic stroke. In this study, the effect of BM-MSCcm and/or minocycline was examined in culture and in a middle cerebral artery occlusion (MCAo) animal model. In neuron-glial cultures, BM-MSCcm and combined treatment, but not minocycline, effectively increased neuronal connection and oligodendroglial survival. In contrast, minocycline and combined treatment, but not BM-MSCcm, reduced toxin-induced free radical production in cultures. Either minocycline or BM-MSCcm, or in combination, conferred protective effects against oxygen glucose deprivation-induced cell damage. In an in vivo study, BM-MSCcm and minocycline were administered to rats 2 h after MCAo. Monotherapy with BM-MSCcm or minocycline after ischemic stroke resulted in 9.4% or 17.5% reduction in infarction volume, respectively, but there was no significant difference. Interestingly, there was a 33.9% significant reduction in infarction volume by combined treatment with BM-MSCcm and minocycline in an in vivo study. The combined therapy also significantly improved grasping power, which was not altered by monotherapy. Furthermore, combined therapy increased the expression of neuronal nuclei in the peri-infarct area and hippocampus, and concurrently decreased the expression of ED1 in rat brain and the peri-infarct zone. Our data suggest that minocycline exhibits a synergistic effect with BM-MSCcm against ischemic stroke not only to improve neurological functional outcome but also to reduce cerebral infarction.

    Topics: Animals; Bone Marrow Cells; Culture Media, Conditioned; Disease Models, Animal; Ischemic Stroke; Male; Mesenchymal Stem Cells; Minocycline; Rats; Rats, Long-Evans

2021
Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways.
    Biochemical pharmacology, 2021, Volume: 186

    Increasing evidence suggests that microglia experience two distinct phenotypes after acute ischemic stroke (AIS): a deleterious M1 phenotype and a neuroprotective M2 phenotype. Promoting the phenotype shift of M1 microglia to M2 microglia is thought to improve functional recovery after AIS. Minocycline, a tetracycline antibiotic, can improve functional recovery after cerebral ischemia in pre-clinical and clinical research. However, the role and mechanisms of minocycline in microglia polarization is unclear.. Using the transient middle cerebral artery occlusion - reperfusion (MCAO/R) model, we treated mice with saline or different minocycline concentration (10, 25, or 50 mg/kg, i.p., daily for 2 wk) at 24 h after reperfusion. Neurobehavioral evaluation, rotarod test, and corner turning test were carried out on day 14 after reperfusion. Then, neuronal injury, reactive gliosis, and microglia polarization were performed on day 7 following MCAO/R. Finally, we treated primary microglial cultures with LPS (Lipopolysaccharide; 100 ng/mL) plus IFN-γ (20 ng/mL) 24 h to induce M1 phenotype and observed the effects of minocycline on the M1/M2-related mRNAs and the STAT1/STAT6 pathway.. We found that a 14-day treatment with minocycline increased the survival rate and promoted functional outcomes evaluated with neurobehavioral evaluation, rotarod test, and corner turning test. Meanwhile, minocycline reduced the brain infarct volume, alleviated neuronal injury, and suppressed reactive gliosis on day 7 following MCAO/R. Moreover, we observed an additive effect of minocycline on microglia polarization to the M1 and M2 phenotypes in vivo and in vitro. In the primary microglia, we further found that minocycline prevented neurons from OGD/R-induced cell death in neuron-microglia co-cultures via regulating M1/M2 microglia polarization through the STAT1/STAT6 pathway.. Minocycline promoted microglial M2 polarization and inhibited M1 polarization, leading to neuronal survival and neurological functional recovery. The findings deepen our understanding of the mechanisms underlying minocycline-mediated neuroprotection in AIS.

    Topics: Animals; Anti-Bacterial Agents; Brain Ischemia; Cell Polarity; Cells, Cultured; Ischemic Stroke; Male; Mice; Mice, Inbred C57BL; Microglia; Minocycline; Recovery of Function; Signal Transduction; STAT1 Transcription Factor; STAT6 Transcription Factor

2021
Immune Responses and Anti-inflammatory Strategies in a Clinically Relevant Model of Thromboembolic Ischemic Stroke with Reperfusion.
    Translational stroke research, 2020, Volume: 11, Issue:3

    The poor clinical relevance of experimental models of stroke contributes to the translational failure between preclinical and clinical studies testing anti-inflammatory molecules for ischemic stroke. Here, we (i) describe the time course of inflammatory responses triggered by a thromboembolic model of ischemic stroke and (ii) we examine the efficacy of two clinically tested anti-inflammatory drugs: Minocycline or anti-CD49d antibodies (tested in stroke patients as Natalizumab) administered early (1 h) or late (48 h) after stroke onset. Radiological (lesion volume) and neurological (grip test) outcomes were evaluated at 24 h and 5 days after stroke. Immune cell responses peaked 48 h after stroke onset. Myeloid cells (microglia/macrophages, dendritic cells, and neutrophils) were already increased 24 h after stroke onset, peaked at 48 h, and remained increased-although to a lesser extent-5 days after stroke onset. CD8

    Topics: Animals; Anti-Inflammatory Agents; Brain; Brain Ischemia; Disease Models, Animal; Ischemic Stroke; Male; Mice; Minocycline; Natalizumab; Reperfusion Injury; Thromboembolism

2020
Minocycline treatment prevents depression and anxiety-like behaviors and promotes neuroprotection after experimental ischemic stroke.
    Brain research bulletin, 2020, Volume: 155

    Depression and anxiety have been reported as the major neuropsychiatric consequences following stroke. Minocycline, a neuroprotective drug has minimized depressive symptoms in patients with major depressive disorders and anxiety-like symptoms. In addition, minocycline demonstrated efficacy and seemed a promising neuroprotective agent in acute stroke patients. The present studied evaluated the effects of minocycline treatment on the depression and anxiety-like behaviors, brain damage and expression of inflammatory and neuroprotective mediators after transient global cerebral ischemia in C57BL/6 mice. Brain ischemia was induced by bilateral occlusion of the common carotids (BCCAo) for 25 min and subsequent reperfusion. Sham and BCCAo animals received minocycline at a dose of 30 mg/kg by intraperitoneal injection during 14 days. The locomotor activity, depression and anxiety-like behaviors were assessed by open field, forced swim and elevated plus maze tests, respectively. Then, the brains were removed and processed to evaluate brain damage by histological and morphometric analysis, hippocampal neurodegeneration using Fluoro-Jade C histochemistry, microglial activity using iba-1 immunohistochemistry, brain levels of TNF, IFN-γ, IL-6, IL-10, IL-12p70 and CCL2 by CBA, CX3CL1 and BDNF by ELISA assays. The animals developed depression and anxiety-like behaviors post-stroke and minocycline treatment prevented those neurobehavioral changes. Moreover, minocycline-treated BCCAo animals showed less intense brain damage in the cerebral cortex, brainstem and cerebellum as well as significantly reduced hippocampal neurodegeneration. BCCAo groups exhibited up-regulation of some cytokines at day 14 after ischemia and brain levels of CX3CL1 and BDNF remained unaltered. Our data indicate that the depression and anxiety-like behavioral improvements promoted by minocycline treatment might be related to its neuroprotective effect after brain ischemia in mice.

    Topics: Animals; Anxiety; Brain; Depression; Encephalitis; Hippocampus; Ischemic Stroke; Male; Mice, Inbred C57BL; Minocycline; Neurons; Neuroprotective Agents

2020
Longitudinal multiparametric MRI study of hydrogen-enriched water with minocycline combination therapy in experimental ischemic stroke in rats.
    Brain research, 2020, 12-01, Volume: 1748

    Free radicals are downstream mediators of several cytotoxic cascades contributing to ischemic brain injury. Molecular hydrogen (H

    Topics: Animals; Brain; Disease Models, Animal; Hydrogen; Ischemic Stroke; Male; Minocycline; Multiparametric Magnetic Resonance Imaging; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Recovery of Function; Tourette Syndrome; Water

2020