minocycline and Intracranial-Hemorrhages

minocycline has been researched along with Intracranial-Hemorrhages* in 3 studies

Other Studies

3 other study(ies) available for minocycline and Intracranial-Hemorrhages

ArticleYear
Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.
    Molecular neurobiology, 2016, Volume: 53, Issue:3

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

    Topics: Animals; Animals, Newborn; Brain Edema; Calcium-Binding Proteins; Cannabinoids; Cerebral Ventricles; Cytokines; Enzyme-Linked Immunosorbent Assay; Indoles; Inflammation; Intracranial Hemorrhages; Magnetic Resonance Imaging; Male; Microfilament Proteins; Microglia; Minocycline; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Tumor Necrosis Factor-alpha

2016
Minocycline prevents osmotic demyelination associated with aquaresis.
    Kidney international, 2014, Volume: 86, Issue:5

    Overly rapid correction of chronic hyponatremia can cause osmotic demyelination syndrome (ODS). Minocycline protects ODS associated with overly rapid correction of chronic hyponatremia with hypertonic saline infusion in rats. In clinical practice, inadvertent rapid correction frequently occurs due to water diuresis, when vasopressin action suddenly ceases. In addition, vasopressin receptor antagonists have been applied to treat hyponatremia. Here the susceptibility to and pathology of ODS were evaluated using rat models developed to represent rapid correction of chronic hyponatremia in the clinical setting. The protective effect of minocycline against ODS was assessed. Chronic hyponatremia was rapidly corrected by 1 (T1) or 10 mg/kg (T10) of tolvaptan, removal of desmopressin infusion pumps (RP), or administration of hypertonic saline. The severity of neurological impairment in the T1 group was significantly milder than in other groups and brain hemorrhage was found only in the T10 and desmopressin infusion removal groups. Minocycline inhibited demyelination in the T1 group. Further, immunohistochemistry showed loss of aquaporin-4 (AQP4) in astrocytes before demyelination developed. Interestingly, serum AQP4 levels were associated with neurological impairments. Thus, minocycline can prevent ODS caused by overly rapid correction of hyponatremia due to water diuresis associated with vasopressin action suppression. Increased serum AQP4 levels may be a predictive marker for ODS.

    Topics: Animals; Antidiuretic Hormone Receptor Antagonists; Aquaporin 4; Astrocytes; Behavior, Animal; Benzazepines; Biomarkers; Brain; Chemokines; Cytokines; Cytoprotection; Deamino Arginine Vasopressin; Demyelinating Diseases; Disease Models, Animal; Diuresis; Hyponatremia; Intracranial Hemorrhages; Male; Matrix Metalloproteinases; Minocycline; Neuroprotective Agents; Osmosis; Rats, Sprague-Dawley; Saline Solution, Hypertonic; Sodium; Therapeutics; Time Factors; Tolvaptan; Water-Electrolyte Balance

2014
Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase.
    Brain research, 2008, Jan-10, Volume: 1188

    Reperfusion injury is a complication of recanalization therapies after focal cerebral ischemia. The disruption of the blood-brain barrier (BBB) caused by up-regulated metalloproteinases (MMPs) can lead to edema and hemorrhage. Middle cerebral artery occlusion (MCAO=90 min) and reperfusion (R=24 h vs. 5 days) was induced in male Wistar rats. Rats were randomized in four groups: (1) control (C), (2) twice daily minocycline (30 mg/kg bodyweight) every day (M), (3) hypothermia (33 degrees C) for 4 h starting 60 min after occlusion (H), (4) combination of groups 2 and 3 (MH). Serial MRI was performed regarding infarct evolution and BBB disruption, MMP-2 and MMP-9 were assessed by zymography of serum and ischemic brain tissue, and a functional neuroscore was done at 24 h and 5 days. M and H reduced both infarct sizes, volume and signal intensity of BBB breakdown and improved neuroscore at all points in time to the same extent. This was most likely due to inhibition of MMP-2 and MMP-9. The presence of MMP-9 at 24 h or MMP-2 at 5 days in brain tissue correlated with BBB breakdown whereas serum MMP-2- and -9 showed no relationship with BBB breakdown. The combination MH had a small but not significantly additional effect over the single treatments. Minocycline seems to be as neuroprotective as hypothermia in the acute and subacute phase after cerebral ischemia. One essential mechanism is the inhibition of MMPs. The combination therapy is only slightly superior. The net effect of MMPs inhibition up to 5 days after focal cerebral ischemia is still beneficial.

    Topics: Acute Disease; Animals; Anti-Bacterial Agents; Blood-Brain Barrier; Brain Edema; Brain Ischemia; Disease Models, Animal; Disease Progression; Hypothermia, Induced; Infarction, Middle Cerebral Artery; Intracranial Hemorrhages; Magnetic Resonance Imaging; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Metalloproteases; Minocycline; Neuroprotective Agents; Rats; Rats, Wistar; Reperfusion Injury; Time Factors

2008