minocycline has been researched along with Hyperoxia* in 3 studies
3 other study(ies) available for minocycline and Hyperoxia
Article | Year |
---|---|
Oligodendroglial maldevelopment in the cerebellum after postnatal hyperoxia and its prevention by minocycline.
According to recent research, brain injury after premature birth often includes impaired growth of the cerebellum. However, causes of cerebellar injury in this population are poorly understood. In this study, we analyzed whether postnatal hyperoxia perturbs white matter development of the cerebellum, and whether cerebellar glial damage can be prevented by minocycline. We used a hyperoxia model in neonatal rats providing 24 h exposure to fourfold increased oxygen concentration (80% O2) from P6 to P7, followed by recovery in room air until P9, P11, P15, P30. Injections with minocycline were performed at the beginning and 12 h into hyperoxia exposure. Hyperoxia induced oxidative stress in the cerebellum at P7 as evidenced by increased nitrotyrosine concentrations. Numbers of proliferating, NG2+Ki67+ oligodendroglial precursor cells were decreased at P7 after hyperoxia and at P11 following recovery in room air. Numbers of mature, CC1+ oligodendrocytes were diminished in recovering hyperoxia rats, and myelin basic protein expression was still decreased at P30. Electron microscopy analysis of myelinated fibers at P30 revealed thinner myelin sheath after hyperoxia. Long-term injury of the cerebellum by neonatal hyperoxia was confirmed by reduced volumes in MRI measurements at P30. In response to 80% O2, expression of platelet-derived growth factor (PDGF)-A was largely reduced in cerebellar tissue and also in cultured cerebellar astrocytes. Treatment with minocycline during hyperoxia prevented oxidative stress, attenuated oligodendroglial injury, and improved astroglial PDGF-A levels. In conclusion, early hyperoxia causes white matter damage in the cerebellum with astroglial dysfunction being involved, and both can be prevented by treatment with minocycline. Neonatal exposure to hyperoxia causes hypomyelination of the cerebellum. Reduced astroglial growth factor production but not microglial inflammation seems to contribute to oligodendroglial damage, and minocycline rescues oligodendroglia development in the cerebellum after hyperoxia. Topics: Age Factors; Animals; Animals, Newborn; Apoptosis; Cell Communication; Cell Death; Cell Proliferation; Cells, Cultured; Cerebellum; Cytokines; Disease Models, Animal; Embryo, Mammalian; Hyperoxia; Minocycline; Nerve Tissue Proteins; Oligodendroglia; Oxidative Stress; Rats; Rats, Sprague-Dawley; Rats, Wistar; Stem Cells | 2015 |
Minocycline protects the immature white matter against hyperoxia.
Poor neurological outcome in preterm infants is associated with periventricular white matter damage and hypomyelination, often caused by perinatal inflammation, hypoxia-ischemia, and hyperoxia. Minocycline has been demonstrated in animal models to protect the immature brain against inflammation and hypoxia-ischemia by microglial inhibition. Here we studied the effect of minocycline on white matter damage caused by hyperoxia. To mimic the 3- to 4-fold increase of oxygen tension caused by preterm birth, we have used the hyperoxia model in neonatal rats providing 24h exposure to 4-fold increased oxygen concentration (80% instead of 21% O2) from P6 to P7. We analyzed whether minocycline prevents activation of microglia and damage of oligodendroglial precursor cell development, and whether acute treatment of hyperoxia-exposed rats with minocycline improves long term white matter integrity. Minocycline administration during exposure to hyperoxia resulted in decreased apoptotic cell death and in improved proliferation and maturation of oligodendroglial precursor cells (OPC). Minocycline blocked changes in microglial morphology and IL-1β release induced by hyperoxia. In primary microglial cell cultures, minocycline inhibited cytokine release while in mono-cultures of OPCs, it improved survival and proliferation. Long term impairment of white matter diffusivity in MRI/DTI in P30 and P60 animals after neonatal hyperoxia was attenuated by minocycline. Minocycline protects white matter development against oxygen toxicity through direct protection of oligodendroglia and by microglial inhibition. This study moreover demonstrates long term benefits of minocycline on white matter integrity. Topics: Age Factors; Animals; Animals, Newborn; Anti-Bacterial Agents; Diffusion Tensor Imaging; Disease Models, Animal; Female; Humans; Hyperoxia; Infant, Newborn; Leukoencephalopathies; Male; Microglia; Minocycline; Nerve Fibers, Myelinated; Neuroprotective Agents; Oligodendroglia; Pregnancy; Primary Cell Culture; Rats; Rats, Wistar | 2014 |
Normobaric hyperoxia combined with minocycline provides greater neuroprotection than either alone in transient focal cerebral ischemia.
Normobaric hyperoxia (NBO), which maintains penumbral oxygenation, reduces brain injury during cerebral ischemia, and minocycline, a tetracycline derivative, reduces reperfusion injury, including inflammation, apoptosis and matrix metalloproteinases (MMPs) activation. Since they have different mechanisms of action, we hypothesized that combining them would provide greater neuroprotection. To test the hypothesis, we evaluated the neuroprotective effects of the combination of NBO with minocycline. Male Sprague-Dawley rats were exposed to NBO (95% O(2)) or normoxia (21% O(2)) during 90-min filament occlusion of the middle cerebral artery, followed by 48 h of reperfusion. Minocycline (3 mg/kg) or vehicle was intravenously administered to rats 15 min after reperfusion onset. Treatment with NBO and minocycline alone resulted in 36% and 30% reductions in infarction volume, respectively. When the two treatments were combined, there was a 68% reduction in infarction volume. The combination therapy also significantly reduced hemispheric swelling, which was absent with monotherapy. In agreement with its greater neuro- and vasoprotection, the combination therapy showed greater inhibitory effects on MMP-2/9 induction, occludin degradation, caspase-3 and -9 activation and apoptosis inducing factor (AIF) induction in ischemic brain tissue. Our results show that NBO plus minocycline effectively reduces brain injury in transient focal cerebral ischemia with protection due to inhibition on MMP-2/9-mediated occludin degradation and attenuation of caspase-dependent and independent apoptotic pathways. Topics: Animals; Anti-Bacterial Agents; Atmospheric Pressure; Brain Ischemia; Disease Models, Animal; Hyperoxia; Infarction, Middle Cerebral Artery; Male; Minocycline; Oxygen Inhalation Therapy; Rats; Rats, Sprague-Dawley | 2013 |