minocycline has been researched along with Heart-Arrest* in 7 studies
7 other study(ies) available for minocycline and Heart-Arrest
Article | Year |
---|---|
Minocycline attenuates microglial response and reduces neuronal death after cardiac arrest and cardiopulmonary resuscitation in mice.
The possible role of minocycline in microglial activation and neuronal death after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) in mice was investigated in this study. The mice were given potassium chloride to stop the heart beating for 8 min to achieve CA, and they were subsequently resuscitated with epinephrine and chest compressions. Forty adult C57BL/6 male mice were divided into 4 groups (n=10 each): sham-operated group, CA/CPR group, CA/CPR+minocycline group, and CA/CPR+vehicle group. Animals in the latter two groups were intraperitoneally injected with minocycline (50 mg/kg) or vehicle (normal saline) 30 min after recovery of spontaneous circulation (ROSC). Twenty-four h after CA/CPR, the brains were removed for histological evaluation of the hippocampus. Microglial activation was evaluated by detecting the expression of ionized calcium-binding adapter molecule-1 (Iba1) by immunohistochemistry. Neuronal death was analyzed by hematoxylin and eosin (H&E) staining and the levels of tumor necrosis factor-alpha (TNF-α) in the hippocampus were measured by enzyme-linked immunosorbent assay (ELISA). The results showed that the neuronal death was aggravated, most microglia were activated and TNF-α levels were enhanced in the hippocampus CA1 region of mice subjected to CA/CPR as compared with those in the sham-operated group (P<0.05). Administration with minocycline 30 min after ROSC could significantly decrease the microglial response, TNF-α levels and neuronal death (P<0.05). It was concluded that early administration with minocycline has a strong therapeutic potential for CA/CPR-induced brain injury. Topics: Animals; Cardiopulmonary Resuscitation; Cell Death; Enzyme-Linked Immunosorbent Assay; Heart Arrest; Hippocampus; Male; Mice; Mice, Inbred C57BL; Microglia; Minocycline; Neurons; Tumor Necrosis Factor-alpha | 2015 |
Inhibition of microglial activation contributes to propofol-induced protection against post-cardiac arrest brain injury in rats.
It has been suggested that propofol can modulate microglial activity and hence may have potential roles against neuroinflammation following brain ischemic insult. However, whether and how propofol can inhibit post-cardiac arrest brain injury via inhibition of microglia activation remains unclear. A rat model of asphyxia cardiac arrest (CA) was created followed by cardiopulmonary resuscitation. CA induced marked microglial activation in the hippocampal CA1 region, revealed by increased OX42 and P2 class of purinoceptor 7 (P2X7R) expression, as well as p38 MAPK phosphorylation. Morris water maze showed that learning and memory deficits following CA could be inhibited or alleviated by pre-treatment with the microglial inhibitor minocycline or propofol. Microglial activation was significantly suppressed likely via the P2X7R/p-p38 pathway by propofol. Moreover, hippocampal neuronal injuries after CA were remarkably attenuated by propofol. In vitro experiment showed that propofol pre-treatment inhibited ATP-induced microglial activation and release of tumor necrosis factor-α and interleukin-1β. In addition, propofol protected neurons from injury when co-culturing with ATP-treated microglia. Our data suggest that propofol pre-treatment inhibits CA-induced microglial activation and neuronal injury in the hippocampus and ultimately improves cognitive function. We proposed a possible mechanism of propofol-mediated brain protection after cardiac arrest (CA). CA induces P2X7R upregulation and p38 phosphorylation in microglia, which induces release of TNF-α and IL-1β and consequent neuronal injury. Propofol could inhibit microglial activation and alleviate neuronal damage. Our results suggest propofol-induced anti-inflammatory treatment as a plausible strategy for therapeutic intervention in post-CA brain injury. Topics: Adenosine Triphosphate; Animals; Asphyxia; Brain Ischemia; CA1 Region, Hippocampal; Cardiopulmonary Resuscitation; CD11b Antigen; Cells, Cultured; Heart Arrest; Interleukin-1beta; Male; MAP Kinase Signaling System; Maze Learning; Mice; Microglia; Minocycline; Models, Animal; Nerve Tissue Proteins; Neuroprotective Agents; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Propofol; Protein Processing, Post-Translational; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, Purinergic P2X7; Tumor Necrosis Factor-alpha | 2015 |
Minocycline attenuates brain tissue levels of TNF-α produced by neurons after prolonged hypothermic cardiac arrest in rats.
Neuro-cognitive disabilities are a well-recognized complication of hypothermic circulatory arrest. We and others have reported that prolonged cardiac arrest (CA) produces neuronal death and microglial proliferation and activation that are only partially mitigated by hypothermia. Microglia, and possibly other cells, are suggested to elaborate tumor necrosis factor alpha (TNF-α), which can trigger neuronal death cascades and exacerbate edema after CNS insults. Minocycline is neuroprotective in some brain ischemia models in part by blunting the microglial response. We tested the hypothesis that minocycline would attenuate neuroinflammation as reflected by brain tissue levels of TNF-α after hypothermic CA in rats. Rats were subjected to rapid exsanguination, followed by a 6 min normothermic CA. Hypothermia (30 °C) was then induced by an aortic saline flush. After a total of 20 min CA, resuscitation was achieved via cardiopulmonary bypass (CPB). After 5 min reperfusion, minocycline (90 mg kg−1; n = 6) or vehicle (PBS; n = 6) was given. Hypothermia (34 °C) was maintained for 6 h. Rats were sacrificed at 6 or 24 h. TNF-α was quantified (ELISA) in four brain regions (cerebellum, CEREB; cortex, CTX; hippocampus, HIP; striatum, STRI). Naïve rats (n = 6) and rats subjected to the same anesthesia and CPB but no CA served as controls (n = 6). Immunocytochemistry was used to localize TNF-α. Naïve rats and CPB controls had no detectable TNF-α in any brain region. CA markedly increased brain TNF-α. Regional differences were seen, with the highest TNF-α levels in striatum in CA groups (10-fold higher, P < 0.05 vs. all other brain regions). TNF-α was undetectable at 24 h. Minocycline attenuated TNF-α levels in CTX, HIP and STRI (P < 0.05). TNF-α showed unique co-localization with neurons. In conclusion, we report region-dependent early increases in brain TNF-α levels after prolonged hypothermic CA, with maximal increases in striatum. Surprisingly, TNF-α co-localized in neurons and not microglia. Minocycline attenuated TNF-α by approximately 50% but did not totally ablate its production. That minocycline decreased brain TNF-α levels suggests that it may represent a therapeutic adjunct to hypothermia in CA neuroprotection. University of Pittsburgh IACUC 0809278B-3. Topics: Animals; Brain; Cardiopulmonary Resuscitation; Heart Arrest; Hypothermia, Induced; Immunohistochemistry; Male; Microglia; Minocycline; Monitoring, Physiologic; Neurons; Neuroprotective Agents; Rats, Sprague-Dawley; Survival Rate; Tumor Necrosis Factor-alpha | 2014 |
Minocycline neuroprotection in a rat model of asphyxial cardiac arrest is limited.
The study investigated a possible neuroprotective potency of minocycline in an experimental asphyxial cardiac arrest (ACA) rat model. Clinically important survival times were evaluated thus broadening common experimental approaches.. Adult rats were subjected to 5 min of ACA followed by resuscitation. There were two main treatment groups: ACA and sham operated. Relating to minocycline treatment each group consisted of three sub-groups: pre-, post-, and sans-mino, with three different survival times: 4, 7, and 21 days. Neurodegeneration and microgliosis were monitored by immunohistochemistry. Alterations of microglia-associated gene expression were analyzed by quantitative RT-PCR.. ACA induced massive nerve cell loss and activation of microglia/macrophages in hippocampal CA1 cell layer intensifying with survival time. After 7 days, minocycline significantly decreased both, neuronal degeneration and microglia response in dependence on the application pattern; application post ACA was most effective. After 21 days, neuroprotective effects of minocycline were lost. ACA significantly induced expression of the microglia-associated factors Ccl2, CD45, Mac-1, F4-80, and Tnfa. Independent on survival time, minocycline affected these parameters not significantly. Expression of iNOS was unaffected by both, ACA and minocycline.. In adult rat hippocampus microglia was significantly activated by ACA. Minocycline positive affected neuronal survival and microglial response temporary, even when applied up to 18 h after ACA, thus defining a therapeutically-relevant time window. As ACA-induced neuronal cell death involves acute and delayed events, longer minocycline intervention targeting also secondary injury cascades should manifest neuroprotective potency, a question to be answered by further experiments. Topics: Animals; Asphyxia; Biomarkers; Brain; Brain Ischemia; Cell Death; Disease Models, Animal; Heart Arrest; Hippocampus; Immunohistochemistry; Microglia; Minocycline; Rats; Resuscitation; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors | 2011 |
Minocycline reduces neuronal death and attenuates microglial response after pediatric asphyxial cardiac arrest.
The mechanisms leading to delayed neuronal death after asphyxial cardiac arrest (ACA) in the developing brain are unknown. This study aimed at investigating the possible role of microglial activation in neuronal death in developing brain after ACA. Postnatal day-17 rats were subjected to 9 mins of ACA followed by resuscitation. Rats were randomized to treatment with minocycline, (90 mg/kg, intraperitoneally (i.p.)) or vehicle (saline, i.p.) at 1 h after return of spontaneous circulation. Thereafter, minocycline (22.5 mg/kg, i.p.) was administrated every 12 h until sacrifice. Microglial activation (evaluated by immunohistochemistry using ionized calcium-binding adapter molecule-1 (Iba1) antibody) coincided with DNA fragmentation and neurodegeneration in CA1 hippocampus and cortex (assessed by deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), Fluoro-Jade-B and Nissl stain). Minocycline significantly decreased both the microglial response and neuronal degeneration compared with the vehicle. Asphyxial CA significantly enhanced proinflammatory cytokine and chemokine levels in hippocampus versus control (assessed by multiplex bead array assay), specifically tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1alpha (MIP-1alpha), regulated upon activation, normal T-cell expressed and secreted (RANTES), and growth-related oncogene (GRO-KC) (P<0.05). Minocycline attenuated ACA-induced increases in MIP-1alpha and RANTES (P<0.05). These data show that microglial activation and cytokine production are increased in immature brain after ACA. The beneficial effect of minocycline suggests an important role for microglia in selective neuronal death after pediatric ACA, and a possible therapeutic target. Topics: Animals; Animals, Newborn; Asphyxia; Body Weight; Cell Death; Cell Survival; Cytokines; DNA Fragmentation; Heart Arrest; Hippocampus; Immunohistochemistry; In Situ Nick-End Labeling; Inflammation; Male; Microglia; Minocycline; Nerve Tissue Proteins; Neurons; Rats; Rats, Sprague-Dawley | 2010 |
Deep hypothermia attenuates microglial proliferation independent of neuronal death after prolonged cardiac arrest in rats.
Conventional resuscitation of exsanguination cardiac arrest (CA) victims is generally unsuccessful. Emergency preservation and resuscitation is a novel approach that uses an aortic flush to induce deep hypothermia during CA, followed by delayed resuscitation with cardiopulmonary bypass. Minocycline has been shown to be neuroprotective across a number of brain injury models via attenuating microglial activation. We hypothesized that deep hypothermia and minocycline would attenuate neuronal death and microglial activation and improve outcome after exsanguination CA in rats.. Using isoflurane anesthesia, rats were subjected to a lethal hemorrhagic shock. After 5 min of no flow, hypothermia was induced with an aortic flush. Three groups were studied: ice-cold (IC) flush, room-temperature (RT) flush, and RT flush followed by minocycline treatment (RT-M). After 20 min of CA, resuscitation was achieved via cardiopulmonary bypass. Survival, Overall Performance Category (1 = normal, 5 = death), Neurologic Deficit Score (0%-10% = normal, 100% = max deficit), neuronal death (Fluoro-Jade C), and microglial proliferation (Iba1 immunostaining) in hippocampus were assessed at 72 h.. Rats in the IC group had lower tympanic temperature during CA versus other groups (IC, 20.9 degrees C +/- 1.3 degrees C; RT, 28.4 degrees C +/- 0.6 degrees C; RT-M, 28.3 degrees C +/- 0.7 degrees C; P < 0.001). Although survival was similar in all groups (RT, 6/9; IC, 6/7; RT-M, 6/11), neurological outcome was better in the IC group versus other groups (Overall Performance Category: IC, 1 +/- 1; RT, 3 +/- 1; RT-M, 2 +/- 1; P < 0.05; Neurologic Deficit Score: IC, 8% +/- 9%; RT, 55% +/- 19%; RT-M, 27% +/- 16%; P < 0.05). Histological damage assessed in survivors showed selective neuronal death in CA1 and dentate gyrus, similar in all groups (P = 0.15). In contrast, microglial proliferation was attenuated in the IC group versus all other groups (P < 0.01).. Deeper levels of hypothermia induced by the IC versus RT flush resulted in better neurological outcome in survivors. Surprisingly, deep hypothermia attenuated microglial activation but not hippocampal neuronal death. Minocycline had modest benefit on neurologic outcome in survivors but did not attenuate microglial activation in brain. Our findings suggest a novel effect of deep hypothermia on microglial proliferation during exsanguination CA. Topics: Animals; Aorta; Body Weight; Cardiopulmonary Resuscitation; Cell Proliferation; Heart Arrest; Heart Rate; Hypothermia, Induced; Male; Microglia; Minocycline; Neurons; Neuroprotective Agents; Rats; Rats, Sprague-Dawley | 2009 |
Anxiety after cardiac arrest/cardiopulmonary resuscitation: exacerbated by stress and prevented by minocycline.
Stress is an important risk factor for cardiovascular disease; however, most of the research on this topic has focused on incidence rather than outcome. The goal of this study was to determine the effects of prior exposure to chronic stress on ischemia-induced neuronal death, microglial activation, and anxiety-like behavior.. In Experiment 1, mice were exposed to 3 weeks of daily restraint (3 hours) and then subjected to either 8 minutes of cardiac arrest/cardiopulmonary resuscitation (CA/CPR) or sham surgery. Anxiety-like behavior, microglial activation, and neuronal damage were assessed on postischemic Day 4. In Experiment 2, mice were infused intracerebroventricularly with minocycline (10 microg/day) to determine the effect of inhibiting post-CA/CPR microglial activation on the development of anxiety-like behavior and neuronal death.. CA/CPR precipitated anxiety-like behavior and increased microglial activation and neuronal damage within the hippocampus relative to sham surgery. Prior exposure to stress exacerbated these measures among CA/CPR mice, but had no significant effect on sham-operated mice. Treatment with minocycline reduced both neuronal damage and anxiety-like behavior among CA/CPR animals. Anxiety-like behavior was significantly correlated with measures of microglial activation but not neuronal damage.. A history of stress exposure increases the pathophysiological response to ischemia and anxiety-like behavior, whereas inhibiting microglial activation reduces neuronal damage and mitigates the development of anxiety-like behavior after CA/CPR. Thus, modulating inflammatory signaling after cerebral ischemia may be beneficial in protecting the brain and preventing the development of affective disorders. Topics: Animals; Anxiety; Cardiopulmonary Resuscitation; Heart Arrest; Male; Mice; Mice, Inbred C57BL; Minocycline; Stress, Psychological | 2009 |