minocycline has been researched along with Cerebral-Amyloid-Angiopathy* in 4 studies
1 trial(s) available for minocycline and Cerebral-Amyloid-Angiopathy
Article | Year |
---|---|
Minocycline for sporadic and hereditary cerebral amyloid angiopathy (BATMAN): study protocol for a placebo-controlled randomized double-blind trial.
Cerebral amyloid angiopathy (CAA) is a disease caused by the accumulation of the amyloid-beta protein and is a major cause of intracerebral hemorrhage (ICH) and vascular dementia in the elderly. The presence of the amyloid-beta protein in the vessel wall may induce a chronic state of cerebral inflammation by activating astrocytes, microglia, and pro-inflammatory substances. Minocycline, an antibiotic of the tetracycline family, is known to modulate inflammation, gelatinase activity, and angiogenesis. These processes are suggested to be key mechanisms in CAA pathology. Our aim is to show the target engagement of minocycline and investigate in a double-blind placebo-controlled randomized clinical trial whether treatment with minocycline for 3 months can decrease markers of neuroinflammation and of the gelatinase pathway in cerebrospinal fluid (CSF) in CAA patients.. The BATMAN study population consists of 60 persons: 30 persons with hereditary Dutch type CAA (D-CAA) and 30 persons with sporadic CAA. They will be randomized for either placebo or minocycline (15 sporadic CAA/15 D-CAA minocycline, 15 sporadic CAA/15 D-CAA placebo). At t = 0 and t = 3 months, we will collect CSF and blood samples, perform a 7-T MRI, and collect demographic characteristics.. The results of this proof-of-principle study will be used to assess the potential of target engagement of minocycline for CAA. Therefore, our primary outcome measures are markers of neuroinflammation (IL-6, MCP-1, and IBA-1) and of the gelatinase pathway (MMP2/9 and VEGF) in CSF. Secondly, we will look at the progression of hemorrhagic markers on 7-T MRI before and after treatment and investigate serum biomarkers.. ClinicalTrials.gov NCT05680389. Registered on January 11, 2023. Topics: Aged; Amyloid beta-Peptides; Anti-Bacterial Agents; Cerebral Amyloid Angiopathy; Cerebral Amyloid Angiopathy, Familial; Cerebral Hemorrhage; Gelatinases; Humans; Inflammation; Minocycline; Neuroinflammatory Diseases; Randomized Controlled Trials as Topic | 2023 |
3 other study(ies) available for minocycline and Cerebral-Amyloid-Angiopathy
Article | Year |
---|---|
Minocycline reduces spontaneous hemorrhage in mouse models of cerebral amyloid angiopathy.
Cerebral amyloid angiopathy (CAA) is a common cause of recurrent intracerebral hemorrhage in the elderly. Previous studies have shown that CAA induces inflammation and expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 (gelatinases) in amyloid-laden vessels. Here, we inhibited both using minocycline in CAA mouse models to determine whether spontaneous intracerebral hemorrhage could be reduced.. Tg2576 (n=16) and 5xFAD/ApoE4 knockin mice (n=16), aged 17 and 12 months, respectively, were treated with minocycline (50 mg/kg, IP) or saline every other day for 2 months. Brains were extracted and stained with X-34 (to quantify amyloid), Perls' blue (to quantify hemorrhage), and immunostained to examined β-amyloid peptide load, gliosis (glial fibrillary acidic protein [GFAP], Iba-1), and vascular markers of blood-brain barrier integrity (zonula occludins-1 [ZO-1] and collagen IV). Brain extracts were used to quantify mRNA for a variety of inflammatory genes.. Minocycline treatment significantly reduced hemorrhage frequency in the brains of Tg2576 and 5xFAD/ApoE4 mice relative to the saline-treated mice, without affecting CAA load. Gliosis (GFAP and Iba-1 immunostaining), gelatinase activity, and expression of a variety of inflammatory genes (matrix metalloproteinase-9, NOX4, CD45, S-100b, and Iba-1) were also significantly reduced. Higher levels of microvascular tight junction and basal lamina proteins were found in the brains of minocycline-treated Tg2576 mice relative to saline-treated controls.. Minocycline reduced gliosis, inflammatory gene expression, gelatinase activity, and spontaneous hemorrhage in 2 different mouse models of CAA, supporting the importance of matrix metalloproteinase-related and inflammatory pathways in intracerebral hemorrhage pathogenesis. As a Food and Drug Administration-approved drug, minocycline might be considered for clinical trials to test efficacy in preventing CAA-related intracerebral hemorrhage. Topics: Animals; Anti-Bacterial Agents; Calcium-Binding Proteins; Cerebral Amyloid Angiopathy; Cerebral Hemorrhage; Disease Models, Animal; Drug Evaluation, Preclinical; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Inflammation; Leukocyte Common Antigens; Matrix Metalloproteinase 9; Mice; Mice, Transgenic; Microfilament Proteins; Minocycline; NADPH Oxidase 4; NADPH Oxidases; Nerve Tissue Proteins; S100 Calcium Binding Protein beta Subunit | 2015 |
Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vivo in transgenic mice.
Cerebral amyloid angiopathy (CAA), characterized by extracellular beta-amyloid peptide (Abeta) deposits in vessel walls, is present in the majority of cases of Alzheimer's disease and is a major cause of hemorrhagic stroke. Although the molecular pathways activated by vascular Abeta are poorly understood, extracellular matrix metalloproteinases (MMP) and Abeta-induced oxidative stress appear to play important roles. We adapted fluorogenic assays for MMP activity and reactive oxygen species generation for use in vivo. Using multiphoton microscopy in APPswe/PS1dE9 and Tg-2576 transgenic mice, we observed strong associations between MMP activation, oxidative stress, and CAA deposition in leptomeningeal vessels. Antioxidant treatment with alpha-phenyl-N-tert-butyl-nitrone reduced oxidative stress associated with CAA (approximately 50% reduction) without affecting MMP activation. Conversely, a selection of agents that inhibit MMP by different mechanisms of action, including minocycline, simvastatin, and GM6001, reduced not only CAA-associated MMP activation (approximately 30-40% reduction) but also oxidative stress (approximately 40% reduction). The inhibitors of MMP did not have direct antioxidant effects. Treatment of animals with alpha-phenyl-N-tert-butyl-nitrone or minocycline did not have a significant effect on CAA progression rates. These data suggest a close association between Abeta-related MMP activation and oxidative stress in vivo and raise the possibility that treatment with MMP inhibitors may have beneficial effects by indirectly reducing the oxidative stress associated with CAA. Topics: Alkenes; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Benzene Derivatives; Cerebral Amyloid Angiopathy; Cyclic N-Oxides; Dipeptides; Fluorescent Dyes; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Matrix Metalloproteinase Inhibitors; Matrix Metalloproteinases; Mice; Mice, Transgenic; Minocycline; Oxidative Stress; Presenilin-1; Protease Inhibitors; Reactive Oxygen Species; Simvastatin; Statistics as Topic; Stilbenes; Time Factors | 2009 |
Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid.
Cerebral microvascular amyloid beta protein (Abeta) deposition and associated neuroinflammation is increasingly recognized as an important component leading to cognitive impairment in Alzheimer's disease and related cerebral amyloid angiopathy disorders. Transgenic mice expressing the vasculotropic Dutch/Iowa (E693Q/D694N) mutant human Abeta precursor protein in brain (Tg-SwDI) accumulate abundant cerebral microvascular fibrillar amyloid deposits and exhibit robust neuroinflammation. In the present study, we investigated the effect of the anti-inflammatory drug minocycline on Abeta accumulation, neuroinflammation, and behavioral deficits in Tg-SwDI mice. Twelve-month-old mice were treated with saline or minocycline by intraperitoneal injection every other day for a total of 4 weeks. During the final week of treatment, the mice were tested for impaired learning and memory. Brains were then harvested for biochemical and immunohistochemical analysis. Minocycline treatment did not alter the cerebral deposition of Abeta or the restriction of fibrillar amyloid to the cerebral microvasculature. Similarly, minocycline-treated Tg-SwDI mice exhibited no change in the levels of total Abeta, the ratios of Abeta40 and Abeta42, or the amounts of soluble, insoluble, or oligomeric Abeta compared with the saline-treated control Tg-SwDI mice. In contrast, the numbers of activated microglia and levels of interleukin-6 were significantly reduced in minocycline-treated Tg-SwDI mice compared with saline-treated Tg-SwDI mice. In addition, there was a significant improvement in behavioral performance of the minocycline-treated Tg-SwDI mice. These finding suggest that anti-inflammatory treatment targeted for cerebral microvascular amyloid-induced microglial activation can improve cognitive deficits without altering the accumulation and distribution of Abeta. Topics: Animals; Cerebral Amyloid Angiopathy; Disease Models, Animal; Humans; Maze Learning; Memory Disorders; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microglia; Minocycline | 2007 |