minocycline and Angelman-Syndrome

minocycline has been researched along with Angelman-Syndrome* in 6 studies

Reviews

2 review(s) available for minocycline and Angelman-Syndrome

ArticleYear
Gene Therapy for Angelman Syndrome: Contemporary Approaches and Future Endeavors.
    Current gene therapy, 2020, Volume: 19, Issue:6

    Angelman Syndrome (AS) is a congenital non inherited neurodevelopmental disorder. The contemporary AS management is symptomatic and it has been accepted that gene therapy may play a key role in the treatment of AS.. The purpose of this study is to summarize existing and suggested gene therapy approaches to Angelman syndrome.. This is a literature review. Pubmed and Scopus databases were researched with keywords (gene therapy, Angelman's syndrome, neurological disorders, neonates). Peer-reviewed studies that were closely related to gene therapies in Angelman syndrome and available in English, Greek, Ukrainian or Indonesian were included. Studies that were published before 2000 were excluded and did not align with the aforementioned criteria.. UBE3A serves multiple roles in signaling and degradation procedures. Although the restoration of UBE3A expression rather than targeting known activities of the molecule would be the optimal therapeutic goal, it is not possible so far. Reinstatement of paternal UBE3A appears as an adequate alternative. This can be achieved by administering topoisomerase-I inhibitors or reducing UBE3A antisense transcript (UBE3A-ATS), a molecule which silences paternal UBE3A.. Understanding UBE3A imprinting unravels the path to an etiologic treatment of AS. Gene therapy models tested on mice appeared less effective than anticipated pointing out that activation of paternal UBE3A cannot counteract the existing CNS defects. On the other hand, targeting abnormal downstream cell signaling pathways has provided promising rescue effects. Perhaps, combined reinstatement of paternal UBE3A expression with abnormal signaling pathways-oriented treatment is expected to provide better therapeutic effects. However, AS gene therapy remains debatable in pharmacoeconomics and ethics context.

    Topics: Angelman Syndrome; Animals; Anti-Anxiety Agents; Antiparkinson Agents; Buspirone; Diet, Ketogenic; Dietary Supplements; Disease Models, Animal; Gene Silencing; Genetic Therapy; Humans; Levodopa; Mice; Minocycline; Neurons; Signal Transduction; Topoisomerase I Inhibitors; Ubiquitin-Protein Ligases

2020
Pharmacological therapies for Angelman syndrome.
    Wiener medizinische Wochenschrift (1946), 2017, Volume: 167, Issue:9-10

    Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by a loss of the maternally inherited UBE3A; the paternal UBE3A is silenced in neurons by a mechanism involving an antisense transcript (UBE3A-AS). We reviewed the published information on clinical trials that have been completed as well as the publicly available information on ongoing trials of therapies for AS. Attempts at hypermethylating the maternal locus through dietary compounds were ineffective. The results of a clinical trial using minocycline as a matrix metalloproteinase-9 inhibitor were inconclusive; another clinical trial is underway. Findings from a clinical trial using L-dopa to alter phosphorylation of calcium/calmodulin-dependent kinase II are awaited. Topoisomerase inhibitors and antisense oligonucleotides are being developed to directly inhibit UBE3A-AS. Other strategies targeting specific pathways are briefly discussed. We also reviewed the medications that are currently used to treat seizures and sleep disturbances, which are two of the more debilitating manifestations of AS.

    Topics: Angelman Syndrome; Animals; Clinical Trials as Topic; Disease Models, Animal; Gene Silencing; Levodopa; Mice; Minocycline; Oligoribonucleotides, Antisense; Seizures; Sleep Wake Disorders; Topoisomerase Inhibitors; Ubiquitin-Protein Ligases

2017

Trials

2 trial(s) available for minocycline and Angelman-Syndrome

ArticleYear
A randomized placebo controlled clinical trial to evaluate the efficacy and safety of minocycline in patients with Angelman syndrome (A-MANECE study).
    Orphanet journal of rare diseases, 2018, 08-20, Volume: 13, Issue:1

    Minocycline is an old tetracycline antibiotic that has shown antiinflammatory and antiapoptotic properties in different neurological disease mouse models. Previous single arm study in humans demonstrated benefits in individuals with Angelman Syndrome (AS); however, its efficacy in patients with Angelman Syndrome has not been assessed in a controlled trial. This was a randomized, double-blind, placebo-controlled, crossover trial in individuals with AS, aged 6 years to 30 years (n = 32, mean age 12 [SD 6·29] years). Participants were randomized to minocycline or placebo for 8 weeks and then switched to the other treatment (a subset of 22 patients) or to receive minocycline for up to 16 weeks (10 patients). After week 16, all patients entered a wash-out 8-week follow-up period.. Thirty-six subjects were screened and 34 were randomized. Thirty two subjects (94·1%) completed at least the first period and all of them completed the full trial. Intention-to-treat analysis demonstrated the lack of significantly greater improvements in the primary outcome, mean changes in age equivalent of the development index of the Merrill-Palmer Revised Scale after minocycline compared with placebo (1·90 ± 3·16 and 2·00 ± 3·28, respectively, p = 0·937). Longer treatment duration up to 16 weeks did not result in better treatment outcomes (1·86 ± 3·35 for 8 weeks treatment vs 1·20 ± 5·53 for 16 weeks treatment, p = 0·667). Side effects were not significantly different during minocycline and placebo treatments. No serious adverse events occurred on minocycline.. Minocycline treatment for up to 16 weeks in children and young adults with AS resulted in lack of significant improvements in development indexes compared to placebo treatment. Treatment with minocycline appears safe and well tolerated; even if it cannot be completely ruled out that longer trials might be required for a potential minocycline effect to be expressed, available results and lack of knowledge on the actual mechanism of action do not support this hypothesis.. European Clinical Trial database ( EudraCT 2013-002154-67 ), registered 16th September 2013; US Clinical trials database ( NCT02056665 ), registered 6th February 2014.

    Topics: Adolescent; Adult; Angelman Syndrome; Child; Double-Blind Method; Female; Humans; Male; Minocycline; Treatment Outcome; Young Adult

2018
An open-label pilot trial of minocycline in children as a treatment for Angelman syndrome.
    BMC neurology, 2014, Dec-10, Volume: 14

    Minocycline, a member of the tetracycline family, has a low risk of adverse effects and an ability to improve behavioral performance in humans with cognitive disruption. We performed a single-arm open-label trial in which 25 children diagnosed with Angelman syndrome (AS) were administered minocycline to assess the safety and tolerability of minocycline in this patient population and determine the drug's effect on the cognitive and behavioral manifestations of the disorder.. Participants, age 4-12 years old, were randomly selected from a pool of previously screened children for participation in this study. Each child received 3 milligrams of minocycline per kilogram of body weight per day for 8 weeks. Participants were assessed during 3 study visits: baseline, after 8-weeks of minocycline treatment and after an 8-week wash out period. The primary outcome measure was the Bayley Scales of Infant and Toddler Development 3rd Edition (BSID-III). Secondary outcome measures included the Clinical Global Impressions Scale (CGI), Vineland Adaptive Behavior Scales 2nd Edition (VABS-II), Preschool Language Scale 4th Edition (PLS-IV) and EEG scores. Observations were considered statistically significant if p < 0.05 using ANOVA and partial eta squared (η(2)) was calculated to show effect size. Multiple comparisons testing between time points were carried out using Dunnett's post hoc testing.. Significant improvement in the mean raw scores of the BSID-III subdomains communication and fine motor ability as well as the subdomains auditory comprehension and total language ability of the PLS-IV when baseline scores were compared to scores after the washout period. Further, improvements were observed in the receptive communication subdomain of the VABS-II after treatment with minocycline. Finally, mean scores of the BSID-III self-direction subdomain and CGI scale score were significantly improved both after minocycline treatment and after the wash out period.. The clinical and neuropsychological measures suggest minocycline was well tolerated and causes improvements in the adaptive behaviors of this sample of children with Angelman syndrome. While the optimal dosage and the effects of long-term use still need to be determined, these findings suggest further investigation into the effect minocycline has on patients with Angelman syndrome is warranted.. NCT01531582 - clinicaltrials.gov.

    Topics: Angelman Syndrome; Anti-Bacterial Agents; Child; Child, Preschool; Cognition Disorders; Female; Humans; Male; Minocycline; Pilot Projects; Treatment Outcome

2014

Other Studies

2 other study(ies) available for minocycline and Angelman-Syndrome

ArticleYear
Quantitative EEG Analysis in Angelman Syndrome: Candidate Method for Assessing Therapeutics.
    Clinical EEG and neuroscience, 2023, Volume: 54, Issue:2

    The goal of these studies was to use quantitative (q)EEG techniques on data from children with Angelman syndrome (AS) using spectral power analysis, and to evaluate this as a potential biomarker and quantitative method to evaluate therapeutics. Although characteristic patterns are evident in visual inspection, using qEEG techniques has the potential to provide quantitative evidence of treatment efficacy. We first assessed spectral power from baseline EEG recordings collected from children with AS compared to age-matched neurotypical controls, which corroborated the previously reported finding of increased total power driven by elevated delta power in children with AS. We then retrospectively analyzed data collected during a clinical trial evaluating the safety and tolerability of minocycline (3 mg/kg/d) to compare pretreatment recordings from children with AS (4-12 years of age) to EEG activity at the end of treatment and following washout for EEG spectral power and epileptiform events. At baseline and during minocycline treatment, the AS subjects demonstrated increased delta power; however, following washout from minocycline treatment the AS subjects had significantly reduced EEG spectral power and epileptiform activity. Our findings support the use of qEEG analysis in evaluating AS and suggest that this technique may be useful to evaluate therapeutic efficacy in AS. Normalizing EEG power in AS therefore may become an important metric in screening therapeutics to gauge overall efficacy. As therapeutics transition from preclinical to clinical studies, it is vital to establish outcome measures that can quantitatively evaluate putative treatments for AS and neurological disorders with distinctive EEG patterns.

    Topics: Angelman Syndrome; Child; Electroencephalography; Humans; Minocycline; Retrospective Studies; Treatment Outcome

2023
A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel
    Molecular autism, 2018, Volume: 9

    Angelman syndrome (AS) is a neurodevelopmental disorder caused by mutations affecting UBE3A function. AS is characterized by intellectual disability, impaired motor coordination, epilepsy, and behavioral abnormalities including autism spectrum disorder features. The development of treatments for AS heavily relies on the ability to test the efficacy of drugs in mouse models that show reliable, and preferably clinically relevant, phenotypes. We previously described a number of behavioral paradigms that assess phenotypes in the domains of motor performance, repetitive behavior, anxiety, and seizure susceptibility. Here, we set out to evaluate the robustness of these phenotypes when tested in a standardized test battery. We then used this behavioral test battery to assess the efficacy of minocycline and levodopa, which were recently tested in clinical trials of AS.. We combined data of eight independent experiments involving 111. We find that the test battery is robust across different. Our study provides a useful tool for preclinical drug testing to identify treatments for Angelman syndrome. Since the phenotypes are observed in several independently derived

    Topics: Angelman Syndrome; Animals; Behavior Rating Scale; Behavior, Animal; Disease Models, Animal; Female; Levodopa; Male; Mice, Mutant Strains; Minocycline; Mutation; Phenotype; Ubiquitin-Protein Ligases

2018