Page last updated: 2024-09-05

migalastat and Disease Models, Animal

migalastat has been researched along with Disease Models, Animal in 13 studies

Research

Studies (13)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (7.69)18.2507
2000's7 (53.85)29.6817
2010's4 (30.77)24.3611
2020's1 (7.69)2.80

Authors

AuthorsStudies
Abrams, RPM; Bachani, M; Balasubramanian, A; Brimacombe, K; Dorjsuren, D; Eastman, RT; Hall, MD; Jadhav, A; Lee, MH; Li, W; Malik, N; Nath, A; Padmanabhan, R; Simeonov, A; Steiner, JP; Teramoto, T; Yasgar, A; Zakharov, AV1
Chang, HH; Fan, JQ; Higuchi, Y; Ishii, S; Mannen, K; Shimada, T; Taguchi, A; Yoshioka, H1
Benjamin, ER; Brignol, N; Desnick, RJ; Feng, J; Frascella, M; Khanna, R; Lockhart, DJ; Lun, Y; Pellegrino, L; Sitaraman, SA; Soska, R; Valenzano, KJ; Young, B1
Furukawa, K; Hamanaka, R; Ishii, S; Kulkarni, AB; Kunieda, T; Mannen, K; Matsuda, J; Noguchi, Y; Shiozuka, C; Taguchi, A; Uchio-Yamada, K; Yano, S; Yokoyama, S; Yoshioka, H1
Ishii, S1
Aguilar-Moncayo, M; García Fernández, JM; García-Moreno, MI; Higaki, K; Hirano, Y; Mena-Barragán, T; Nanba, E; Ninomiya, H; Ohno, K; Ortiz Mellet, C; Sakakibara, Y; Suzuki, Y; Takai, T; Yu, L; Yura, K1
Germain, DP1
D'Azzo, A; El-Abbadi, MM; Hauser, EC; Kasperzyk, JL; Platt, FM; Seyfried, TN1
Andersson, U; Borja, MC; Butters, TD; Dwek, RA; Jeyakumar, M; Platt, FM; Smith, D1
Borja, MC; Butters, TD; Dwek, RA; Jeyakumar, M; Neville, DC; Platt, FM; Smith, DA; Williams, IM1
Baek, RC; Kasperzyk, JL; Platt, FM; Seyfried, TN1
Butters, TD; d'Azzo, A; Dwek, RA; Elliot-Smith, E; Jeyakumar, M; Lloyd-Evans, E; Platt, FM; Smith, DA; Speak, AO; van der Spoel, AC1
Butters, TD; Dwek, RA; Karlsson, GB; Neises, GR; Platt, FM1

Reviews

1 review(s) available for migalastat and Disease Models, Animal

ArticleYear
[Fabry's disease (alpha-galactosidase-A deficiency): recent therapeutic innovations].
    Journal de la Societe de biologie, 2002, Volume: 196, Issue:2

    Topics: 1-Deoxynojirimycin; Adenoviridae; alpha-Galactosidase; Analgesics; Animals; Antihypertensive Agents; Clinical Trials as Topic; Combined Modality Therapy; Disease Models, Animal; Enzyme Inhibitors; Fabry Disease; Genetic Therapy; Genetic Vectors; Humans; Kidney Diseases; Kidney Transplantation; Mice; Mice, Knockout; Recombinant Fusion Proteins; Renal Dialysis; Retroviridae; X Chromosome

2002

Other Studies

12 other study(ies) available for migalastat and Disease Models, Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease.
    The Journal of pharmacology and experimental therapeutics, 2009, Volume: 328, Issue:3

    Topics: 1-Deoxynojirimycin; alpha-Galactosidase; Animals; Disease Models, Animal; Enzyme Inhibitors; Fabry Disease; Glycosphingolipids; Humans; Kinetics; Mice; Mice, Transgenic; Models, Molecular; Protein Folding; Tissue Distribution

2009
The pharmacological chaperone 1-deoxygalactonojirimycin reduces tissue globotriaosylceramide levels in a mouse model of Fabry disease.
    Molecular therapy : the journal of the American Society of Gene Therapy, 2010, Volume: 18, Issue:1

    Topics: 1-Deoxynojirimycin; alpha-Galactosidase; Animals; Blotting, Western; Disease Models, Animal; Fabry Disease; Humans; Immunohistochemistry; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Trihexosylceramides

2010
Increased globotriaosylceramide levels in a transgenic mouse expressing human alpha1,4-galactosyltransferase and a mouse model for treating Fabry disease.
    Journal of biochemistry, 2011, Volume: 149, Issue:2

    Topics: 1-Deoxynojirimycin; alpha-Galactosidase; Animals; Crosses, Genetic; Disease Models, Animal; Enzyme Activation; Fabry Disease; Female; Galactosyltransferases; Humans; Kidney; Liver; Mice; Mice, Knockout; Mice, Transgenic; Molecular Chaperones; Spleen; Trihexosylceramides; Up-Regulation

2011
Pharmacological chaperone therapy for Fabry disease.
    Proceedings of the Japan Academy. Series B, Physical and biological sciences, 2012, Volume: 88, Issue:1

    Topics: 1-Deoxynojirimycin; alpha-Galactosidase; Animals; Clinical Trials as Topic; Disease Models, Animal; Fabry Disease; Female; Humans; Immunohistochemistry; Male; Mice; Mutant Proteins; Mutation; Protein Folding

2012
A bicyclic 1-deoxygalactonojirimycin derivative as a novel pharmacological chaperone for GM1 gangliosidosis.
    Molecular therapy : the journal of the American Society of Gene Therapy, 2013, Volume: 21, Issue:3

    Topics: 1-Deoxynojirimycin; Administration, Oral; Animals; beta-Galactosidase; Bridged Bicyclo Compounds, Heterocyclic; Cells, Cultured; Computational Biology; Disease Models, Animal; Enzyme Inhibitors; Fibroblasts; Gangliosidosis, GM1; Imino Sugars; Lysosomes; Mice; Mice, Inbred C57BL; Mice, Knockout; Molecular Chaperones; Mucopolysaccharidosis IV; Mutation; Recombination, Genetic

2013
N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis.
    Journal of neurochemistry, 2004, Volume: 89, Issue:3

    Topics: 1-Deoxynojirimycin; Animals; Animals, Newborn; Body Weight; Brain; Brain Chemistry; Chromatography, Thin Layer; Disease Models, Animal; Fetal Viability; Gangliosides; Gangliosidosis, GM1; Lipid Metabolism; Lipids; Mice; Mice, Inbred C57BL; Mice, Knockout; Treatment Outcome

2004
Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease.
    Neurobiology of disease, 2004, Volume: 16, Issue:3

    Topics: 1-Deoxynojirimycin; Animals; Behavior, Animal; beta-N-Acetylhexosaminidases; Body Weight; Brain; Disease Models, Animal; Female; Gangliosides; Life Expectancy; Liver; Male; Mice; Mice, Mutant Strains; Sandhoff Disease

2004
NSAIDs increase survival in the Sandhoff disease mouse: synergy with N-butyldeoxynojirimycin.
    Annals of neurology, 2004, Volume: 56, Issue:5

    Topics: 1-Deoxynojirimycin; Age Factors; Animals; Anti-Inflammatory Agents, Non-Steroidal; Anti-Obesity Agents; Behavior, Animal; Blotting, Western; Brain; Cyclooxygenase 2; Dinoprostone; Disease Models, Animal; Drug Synergism; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Glutathione; Histocompatibility Antigens Class II; Immunohistochemistry; Isoenzymes; Lipid Peroxidation; Mice; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Prostaglandin-Endoperoxide Synthases; Psychomotor Performance; Sandhoff Disease; Spinal Cord; Survival Rate; Time Factors; Vitamin A

2004
N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice.
    Neurochemistry international, 2008, Volume: 52, Issue:6

    Topics: 1-Deoxynojirimycin; Animals; Animals, Newborn; beta-Hexosaminidase alpha Chain; Brain; Brain Chemistry; Disease Models, Animal; Down-Regulation; G(M2) Ganglioside; Gangliosides; Glycosphingolipids; Mice; Mice, Knockout; Nerve Degeneration; Neuraminidase; Sandhoff Disease; Treatment Outcome

2008
Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis.
    Molecular genetics and metabolism, 2008, Volume: 94, Issue:2

    Topics: 1-Deoxynojirimycin; Animals; beta-Galactosidase; Brain; Disease Models, Animal; Enzyme Inhibitors; Feces; Gangliosidosis, GM1; Glucosyltransferases; Glycosphingolipids; Humans; Macrophage Activation; Mice; Mice, Knockout; Motor Activity; Protein Transport

2008
N-butyldeoxygalactonojirimycin inhibits glycolipid biosynthesis but does not affect N-linked oligosaccharide processing.
    The Journal of biological chemistry, 1994, Oct-28, Volume: 269, Issue:43

    Topics: 1-Deoxynojirimycin; alpha-Glucosidases; Animals; Cells, Cultured; Disease Models, Animal; Gaucher Disease; Glucosylceramidase; Glucosyltransferases; Glycolipids; Humans; Mice; Oligosaccharides; Structure-Activity Relationship

1994