midostaurin has been researched along with Breast-Neoplasms* in 4 studies
1 review(s) available for midostaurin and Breast-Neoplasms
Article | Year |
---|---|
Combination treatment with CPX-351 and midostaurin in patients with secondary acute myeloid leukaemia that are FLT3 mutated: three cases and review of literature.
Topics: Aged; Allografts; Anemia, Refractory, with Excess of Blasts; Aniline Compounds; Antineoplastic Combined Chemotherapy Protocols; Azacitidine; Breast Neoplasms; Bridged Bicyclo Compounds, Heterocyclic; Clinical Trials, Phase III as Topic; Cytarabine; Daunorubicin; Fatal Outcome; Female; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Liposomes; Male; Middle Aged; Myelodysplastic Syndromes; Neoplasm, Residual; Neoplasms, Radiation-Induced; Oncogene Proteins, Fusion; Peripheral Blood Stem Cell Transplantation; Point Mutation; Protein Kinase Inhibitors; Pyrazines; Remission Induction; Salvage Therapy; Staurosporine; Sulfonamides | 2020 |
3 other study(ies) available for midostaurin and Breast-Neoplasms
Article | Year |
---|---|
Comparison of staurosporine and four analogues: their effects on growth, rhodamine 123 retention and binding to P-glycoprotein in multidrug-resistant MCF-7/Adr cells.
The potent kinase inhibitor staurosporine and its protein kinase C (PKC)-selective analogue CGP 41251 are known to sensitise cells with the multidrug resistance (MDR) phenotype mediated by P-glycoprotein (P-gp) to cytotoxic agents. Here four PKC-selective staurosporine cogeners, CGP 41251, UCN-01, RO 31 8220 and GF 109203X, were compared with staurosporine in terms of their MDR-reversing properties and their susceptibility towards P-gp-mediated drug efflux from MCF-7/Adr cells. Staurosporine was the most potent and the bisindolylmaleimides RO 31 8220 and GF 109203X the least potent cytostatic agents. When compared with MCF-7 wild-type cells, MCF-7/Adr cells were resistant towards the growth-arresting properties of RO 31 8220 and UCN-01, with resistance ratios of 12.6 and 7.0 respectively. This resistance could be substantially reduced by inclusion of the P-gp inhibitor reserpine. The ratios for GF 109203X, staurosporine and CGP 41251 were 1.2, 2.0 and 2.9 respectively, and they were hardly affected by reserpine. These results suggest that RO 31 8220 and UCN-01 are avidly transported by P-gp but that the other compounds are not. Staurosporine and CGP 41251 at 10 and 20 nM, respectively, decreased efflux of the P-gp probe rhodamine 123 (R123) from MCF-7/Adr cells, whereas RO 31 8220 and GF 109203X at 640 nM were inactive. CGP 41251 was the most effective and GF 109203X the least effective inhibitor of equilibrium binding of [3H]vinblastine to its specific binding sites, probably P-gp, in MCF-7/Adr cells. Overall, the results imply that for this class of compound the structural properties that determine susceptibility towards P-gp-mediated substrate transport are complex. Comparison with ability to inhibit PKC suggests that the kinase inhibitors affect P-gp directly and not via inhibition of PKC. Among these compounds CGP 41251 was a very potent MDR-reversing agent with high affinity for P-gp and least affected by P-gp-mediated resistance, rendering it an attractive drug candidate for clinical development. Topics: Alkaloids; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Breast Neoplasms; Cell Division; Cell Line; Doxorubicin; Drug Resistance, Multiple; Female; Flow Cytometry; Fluorescent Dyes; Humans; Indoles; Maleimides; Protein Kinase C; Rhodamine 123; Rhodamines; Staurosporine; Structure-Activity Relationship; Tumor Cells, Cultured; Vinblastine | 1996 |
Differential inhibition of cytosolic and membrane-derived protein kinase C activity by staurosporine and other kinase inhibitors.
The hypothesis was tested that 9 kinase inhibitors with diverse specificities for protein kinase C (PKC), including staurosporine and four of its analogues, interfere differently with PKC derived from either the cytosolic or particulate fractions of MCF-7 breast carcinoma cells. GF 109203X inhibited the enzyme identically in either preparation. CGP 41251 and calphostin C inhibited cytosolic PKC more effectively than membrane-derived PKC with ratios of IC50 (cytosolic PKC) over IC50 (membrane-derived PKC) of 0.07 and 0.04, respectively. The other six agents inhibited membrane-derived PKC more potently than cytosolic enzyme. Staurosporine and RO 31 8220 exhibited IC50 ratios of 12.3 and 21.6, respectively. The results suggest that there are dramatic differences between kinase inhibitors in their divergent effects on cytosolic and membrane-derived PKC which should be borne in mind in the interpretation of their pharmacological properties. Topics: Alkaloids; Breast Neoplasms; Cell Membrane; Cytosol; Humans; Immunoblotting; Indoles; Naphthalenes; Phorbol 12,13-Dibutyrate; Polycyclic Compounds; Protein Kinase C; Staurosporine; Tumor Cells, Cultured | 1995 |
Comparison of ability of protein kinase C inhibitors to arrest cell growth and to alter cellular protein kinase C localisation.
Inhibitors of protein kinase C (PKC) such as the staurosporine analogues UCN-01 and CGP 41251 possess antineoplastic properties, but the mechanism of their cytostatic action is not understood. We tested the hypothesis that the ability of these compounds to arrest growth is intrinsically linked with their propensity to inhibit PKC. Compounds with varying degrees of potency and specificity for PKC were investigated in A549 and MCF-7 carcinoma cells. When the log values of drug concentration which arrested cell growth by 50% (IC50) were plotted against the logs of the IC50 values for inhibition of cytosolic PKC activity, two groups of compound could be distinguished. The group which comprised the more potent inhibitors of enzyme activity (calphostin C, staurosporine and its analogues UCN-01, RO 31-8220, CGP 41251) were the stronger growth inhibitors, whereas the weaker enzyme inhibitors (trimethylsphingosine, miltefosine, NPC-15437, H-7, H-7I) affected proliferation less potently. GF 109203X was exceptional in that it inhibited PKC with an IC50 in the 10(-8) M range, yet was only weakly cytostatic. To substantiate the role of PKC in the growth inhibition caused by these agents, cells were depleted of PKC by incubation with bryostatin 1 (1 microM). The susceptibility of these enzyme-depleted cells towards growth arrest induced by staurosporine, RO 31-8220, UCN-01 or H-7 was studied. The drug concentrations which inhibited incorporation of [3H]thymidine into PKC-depleted A549 cells by 50% were slightly, but not significantly, lower than significantly, lower than those observed in control cells. These results suggest that PKC is unlikely to play a direct role in the arrest of the growth of A549 and MCF-7 cells mediated by these agents. Staurosporine is not only a strong inhibitor of PKC but also mimics activators of this enzyme in that it elicits the cellular redistribution of certain PKC isoenzymes. The ability of kinase inhibitors other than staurosporine to exert a similar effect was investigated. Calphostin C, H-7, H-7I, miltefosine, staurosporine, UCN-01, RO 31-8220, CGP 41251 or GF 109203X were incubated for 30 min with A549 cells in the absence or presence of the PKC activator 12-O-tetradecanoyl phorbol-13-acetate. The subcellular distribution of PKC-alpha-, -epsilon and -zeta was measured by Western blot analysis. None of the agents affected PKC-alpha or -zeta.(ABSTRACT TRUNCATED AT 400 WORDS) Topics: Alkaloids; Antineoplastic Agents; Breast Neoplasms; Cell Division; Cell Line; Dose-Response Relationship, Drug; Humans; Isoenzymes; Lung Neoplasms; Protein Kinase C; Staurosporine; Structure-Activity Relationship; Tumor Cells, Cultured | 1995 |