mezerein and HIV-Infections

mezerein has been researched along with HIV-Infections* in 3 studies

Other Studies

3 other study(ies) available for mezerein and HIV-Infections

ArticleYear
HPLC-Based Purification and Isolation of Potent Anti-HIV and Latency Reversing Daphnane Diterpenes from the Medicinal Plant
    Viruses, 2022, 06-30, Volume: 14, Issue:7

    Despite the success of combination antiretroviral therapy (cART), HIV persists in low- and middle-income countries (LMIC) due to emerging drug resistance and insufficient drug accessibility. Furthermore, cART does not target latently-infected CD4+ T cells, which represent a major barrier to HIV eradication. The “shock and kill” therapeutic approach aims to reactivate provirus expression in latently-infected cells in the presence of cART and target virus-expressing cells for elimination. An attractive therapeutic prototype in LMICs would therefore be capable of simultaneously inhibiting viral replication and inducing latency reversal. Here we report that Gnidia sericocephala, which is used by traditional health practitioners in South Africa for HIV/AIDS management to supplement cART, contains at least four daphnane-type compounds (yuanhuacine A (1), yuanhuacine as part of a mixture (2), yuanhuajine (3), and gniditrin (4)) that inhibit viral replication and/or reverse HIV latency. For example, 1 and 2 inhibit HIV replication in peripheral blood mononuclear cells (PBMC) by >80% at 0.08 µg/mL, while 1 further inhibits a subtype C virus in PBMC with a half-maximal effective concentration (EC50) of 0.03 µM without cytotoxicity. Both 1 and 2 also reverse HIV latency in vitro consistent with protein kinase C activation but at 16.7-fold lower concentrations than the control prostratin. Both 1 and 2 also reverse latency in primary CD4+ T cells from cART-suppressed donors with HIV similar to prostratin but at 6.7-fold lower concentrations. These results highlight G. sericocephala and components 1 and 2 as anti-HIV agents for improving cART efficacy and supporting HIV cure efforts in resource-limited regions.

    Topics: CD4-Positive T-Lymphocytes; Chromatography, High Pressure Liquid; Diterpenes; HIV Infections; HIV-1; Humans; Leukocytes, Mononuclear; Plants, Medicinal; Thymelaeaceae; Virus Activation; Virus Latency

2022
Identification of anti-HIV macrocyclic daphnane orthoesters from Wikstroemia ligustrina by LC-MS analysis and phytochemical investigation.
    Journal of natural medicines, 2021, Volume: 75, Issue:4

    Macrocyclic daphnane orthoesters (MDOs) have attracted significant research interest for the drug discovery to cure HIV infection based on the "Shock and Kill" strategy. In the present study, the first chemical study on Wikstroemia ligustrina (Thymelaeaceae) was carried out by LC-MS analysis and phytochemical investigation. Nine daphnane diterpenoids (1-9) including seven MDOs were detected by LC-MS analysis. Further phytochemical investigation resulted in the isolation and structural elucidation of five daphnanes (1, 2, 5, 8, and 9) with potent anti-HIV activity. Taking the isolated MDO (1) as a model compound, the MS/MS fragmentation pathway was also elucidated.

    Topics: Chromatography, Liquid; Diterpenes; HIV Infections; Humans; Phytochemicals; Tandem Mass Spectrometry; Wikstroemia

2021
Antiviral Activity of Diterpene Esters on Chikungunya Virus and HIV Replication.
    Journal of natural products, 2015, Jun-26, Volume: 78, Issue:6

    Recently, new daphnane, tigliane, and jatrophane diterpenoids have been isolated from various Euphorbiaceae species, of which some have been shown to be potent inhibitors of chikungunya virus (CHIKV) replication. To further explore this type of compound, the antiviral activity of a series of 29 commercially available natural diterpenoids was evaluated. Phorbol-12,13-didecanoate (11) proved to be the most potent inhibitor, with an EC50 value of 6.0 ± 0.9 nM and a selectivity index (SI) of 686, which is in line with the previously reported anti-CHIKV potency for the structurally related 12-O-tetradecanoylphorbol-13-acetate (13). Most of the other compounds exhibited low to moderate activity, including an ingenane-type diterpene ester, compound 28, with an EC50 value of 1.2 ± 0.1 μM and SI = 6.4. Diterpene compounds are known also to inhibit HIV replication, so the antiviral activities of compounds 1-29 were evaluated also against HIV-1 and HIV-2. Tigliane- (4β-hydroxyphorbol analogues 10, 11, 13, 15, 16, and 18) and ingenane-type (27 and 28) diterpene esters were shown to inhibit HIV replication in vitro at the nanomolar level. A Pearson analysis performed with the anti-CHIKV and anti-HIV data sets demonstrated a linear relationship, which supported the hypothesis made that PKC may be an important target in CHIKV replication.

    Topics: Anti-HIV Agents; Antiviral Agents; Chikungunya virus; Diterpenes; DNA Replication; Esters; Euphorbiaceae; HIV Infections; HIV-1; HIV-2; Molecular Structure; Phorbol Esters; Tetradecanoylphorbol Acetate; Virus Replication

2015