mezerein and Glioblastoma

mezerein has been researched along with Glioblastoma* in 2 studies

Other Studies

2 other study(ies) available for mezerein and Glioblastoma

ArticleYear
Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.
    Oncogene, 2001, Oct-25, Volume: 20, Issue:48

    Abnormalities in cellular differentiation are frequent occurrences in human cancers. Treatment of human melanoma cells with recombinant fibroblast interferon (IFN-beta) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss in growth potential, suppression of tumorigenic properties and induction of terminal cell differentiation. Subtraction hybridization identified melanoma differentiation associated gene-7 (mda-7), as a gene induced during these physiological changes in human melanoma cells. Ectopic expression of mda-7 by means of a replication defective adenovirus results in growth suppression and induction of apoptosis in a broad spectrum of additional cancers, including melanoma, glioblastoma multiforme, osteosarcoma and carcinomas of the breast, cervix, colon, lung, nasopharynx and prostate. In contrast, no apparent harmful effects occur when mda-7 is expressed in normal epithelial or fibroblast cells. Human clones of mda-7 were isolated and its organization resolved in terms of intron/exon structure and chromosomal localization. Hu-mda-7 encompasses seven exons and six introns and encodes a protein with a predicted size of 23.8 kDa, consisting of 206 amino acids. Hu-mda-7 mRNA is stably expressed in the thymus, spleen and peripheral blood leukocytes. De novo mda-7 mRNA expression is also detected in human melanocytes and expression is inducible in cells of melanocyte/melanoma lineage and in certain normal and cancer cell types following treatment with a combination of IFN-beta plus MEZ. Mda-7 expression is also induced during megakaryocyte differentiation induced in human hematopoietic cells by treatment with TPA (12-O-tetradecanoyl phorbol-13-acetate). In contrast, de novo expression of mda-7 is not detected nor is it inducible by IFN-beta+MEZ in a spectrum of additional normal and cancer cells. No correlation was observed between induction of mda-7 mRNA expression and growth suppression following treatment with IFN-beta+MEZ and induction of endogenous mda-7 mRNA by combination treatment did not result in significant intracellular MDA-7 protein. Radiation hybrid mapping assigned the mda-7 gene to human chromosome 1q, at 1q 32.2 to 1q41, an area containing a cluster of genes associated with the IL-10 family of cytokines. Mda-7 represents a differentiation, growth and apoptosis associated gene with potential utility for the gene-based therapy of diverse human cancers.

    Topics: Antigens, Neoplasm; Apoptosis; Base Sequence; Carcinoma; Cell Differentiation; Cell Division; Chromosomes, Human, Pair 1; Cloning, Molecular; Dimethyl Sulfoxide; Diterpenes; Female; Gene Expression Regulation, Neoplastic; Genes; Genes, Tumor Suppressor; Glioblastoma; Growth Substances; HL-60 Cells; Humans; Interferon Type I; Interleukins; K562 Cells; Male; Melanocytes; Melanoma; Molecular Sequence Data; Molecular Weight; Neoplasm Proteins; Neoplasms; Organ Specificity; Osteosarcoma; Recombinant Fusion Proteins; Recombinant Proteins; RNA, Messenger; RNA, Neoplasm; Terpenes; Tetradecanoylphorbol Acetate; Transfection; Tumor Cells, Cultured

2001
Growth inhibition and modulation of antigenic phenotype in human melanoma and glioblastoma multiforme cells by caffeic acid phenethyl ester (CAPE)
    Cellular and molecular biology, 1992, Volume: 38, Issue:5

    The active component of the honeybee hive product propolis, caffeic acid phenethyl ester (CAPE), has been shown to display increased toxicity toward various oncogene-transformed cell lines in comparison with their untransformed counterparts (Su et al., 4: 231-242, 1991). This observation provides support for the concept that it is the transformed phenotype which is specifically sensitive to CAPE. In the present study, we have determined the effect of CAPE on the growth and antigenic phenotype of a human melanoma cell line, HO-1, and a human glioblastoma multiforme cell line, GBM-18. For comparison, we have also tested the effects of mezerein (MEZ), mycophenolic acid (MPA) and retinoic acid (RA), which can differentially modulate growth, differentiation and the antigenic phenotype in these human tumor cell lines. Growth of both cell lines was suppressed by CAPE in a dose-dependent fashion, with HO-1 cells being more sensitive than GBM-18 cells. The antiproliferative effect of CAPE was enhanced in both cell types if CAPE and MEZ were used in combination. Growth suppression was associated with morphological changes in H0-1 cells, suggesting induction of a more differentiated phenotype. CAPE also differentially modulated the expression of several antigens on the surface of the two tumor cell lines. These results suggest a potential role for CAPE as an antitumor agent, an antigenic modulating agent and possibly a differentiation inducing agent.

    Topics: Antigens, Neoplasm; Antineoplastic Agents, Phytogenic; Caffeic Acids; Cell Differentiation; Cell Division; Cytotoxins; Diterpenes; Glioblastoma; Humans; Melanoma; Mycophenolic Acid; Phenotype; Phenylethyl Alcohol; Terpenes; Tretinoin; Tumor Cells, Cultured

1992