methylazoxymethanol has been researched along with Schizophrenia* in 24 studies
24 other study(ies) available for methylazoxymethanol and Schizophrenia
Article | Year |
---|---|
LY395756 promotes NR2B expression via activation of AKT/CREB signaling in the juvenile methylazoxymethanol mice model of schizophrenia.
Synaptic N-methyl-d-aspartate receptor subtype 2B(NR2B) is significantly reduced in prefrontal cortex (PFC) in the neurodevelopmental methylazoxymethanol (MAM) model of schizophrenia (SCZ). Recent research has shown that LY395756 can effectively restore NR2B levels and improve cognitive performance in juvenile MAM mice model. However, the underlying mechanisms of these beneficial effects remain unclear.. Juvenile MAM mice model of SCZ is used in our study. Synaptic membrane protein levels were examined by western blotting under different treatment conditions. Interaction of cAMP-response element binding protein (CREB) and the promoter of NR2B was detected by the chromatin immunoprecipitation (ChIP) assay. Further examination of signaling pathway that mediates NR2B expression was also investigated by western blotting.. In the PFC of the juvenile MAM mice schizophrenia model, CREB was found to directly bind with the promoter of NR2B. LY395756 activated the phosphorylation of AKT. Phosphorylated AKT subsequently induced the phosphorylation of CREB, and the activated CREB promoted the expression of NR2B. Subsequent experiments showed that the dephosphorylation of CREB induced by protein phosphatase 1 (PP1) can inhibit NR2B levels. Taken together, these findings support that the AKT/CREB signaling pathway is essential for the promoting effect of LY395756 on synaptic NR2B in PFC in juvenile MAM mice SCZ model.. Our investigation has identified a novel mechanism by which LY395756 increases NR2B expression in juvenile MAM mice SCZ model. The AKT/CREB signaling pathway warrants further research as a potential direction for clinical treatment of SCZ. Topics: Amino Acids, Dicarboxylic; Animals; Bridged Bicyclo Compounds; Cyclic AMP Response Element-Binding Protein; Disease Models, Animal; Methylazoxymethanol Acetate; Mice; Phosphorylation; Proto-Oncogene Proteins c-akt; Receptors, N-Methyl-D-Aspartate; Schizophrenia; Signal Transduction | 2022 |
Nicotine Administration Normalizes Behavioral and Neurophysiological Perturbations in the MAM Rodent Model of Schizophrenia.
The present study utilized the methylazoxymethanol (MAM) neurodevelopmental rodent model of schizophrenia (SCZ) to evaluate the hypothesis that individuals with SCZ smoke in an attempt to "self-medicate" their symptoms through nicotine (NIC) intake.. To explore this question, we examined the effects of acute and chronic administration of NIC in 2 established behavioral tests known to be disrupted in the MAM model: prepulse inhibition of startle and novel object recognition. Additionally, we assessed the effects of acute and chronic NIC on 2 indices of the pathophysiology of SCZ modeled by MAM, elevated dopamine neuron population activity in the ventral tegmental area and neuronal activity in the ventral hippocampus, using in vivo electrophysiological recordings.. Our findings demonstrated that both acute and chronic administration of NIC significantly improved deficits in prepulse inhibition of startle and novel object recognition among MAM rats and normalized elevated ventral tegmental area and ventral hippocampal neuronal activity in these animals.. Together, these findings of NIC-induced improvement of deficits lend support for a "self-medication" hypothesis behind increased cigarette smoking in SCZ and illustrate the potential utility of nicotinic modulation in future pharmacotherapies for certain SCZ symptoms. Topics: Animals; Disease Models, Animal; Dopaminergic Neurons; Hippocampus; Male; Methylazoxymethanol Acetate; Nicotine; Prepulse Inhibition; Rats; Rats, Sprague-Dawley; Schizophrenia; Self Medication; Ventral Tegmental Area | 2021 |
Prenatal MAM treatment altered fear conditioning following social isolation: Relevance to schizophrenia.
Adolescent social isolation (SI) might change the trajectory of brain development. In the present study, we investigated the effect of short-term adolescent SI on fear memory, anxiety and protein levels in the adult medial prefrontal cortex of rats prenatally treated with methylazoxymethanol, MAM-E17 model of schizophrenia. The animals were maintained in standard housing (SH) or social isolation (P30-P40, SI) conditions. Behavioural tests (trace or delay fear conditioning, light/dark box) were performed in late adolescence and early adulthood. The results showed that MAM treatment did not alter fear memory, which was investigated with the use of either trace or delay fear conditioning, at any age, and SI decreased the fear response in adult control animals only under trace conditioning. Neither MAM nor SI influenced anxiety-related behaviour measured in the light/dark box. A proteomics study showed that both MAM and SI changed the protein levels related to synapse maturation and cytoskeletal organization, energy transfer and metabolic processes. Prenatal or adolescent environmental factors are able to change the expression of proteins that are correlated with behavioural impairments. Moreover, SI reversed some alterations in proteins induced by MAM. Thus, normally developing brains showed different responses to adolescent SI than those with altering courses of MAM administration. Topics: Age Factors; Animals; Behavior, Animal; Conditioning, Classical; Fear; Female; Male; Methylazoxymethanol Acetate; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Proteome; Rats, Wistar; Schizophrenia; Social Isolation; Teratogens | 2021 |
Inhibition of BET Proteins during Adolescence Affects Prefrontal Cortical Development: Relevance to Schizophrenia.
The present study investigated the role of proteins from the bromodomain and extra-terminal (BET) family in schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia induced by prenatal methylazoxymethanol (MAM) administration (MAM-E17).. An inhibitor of BET proteins, JQ1, was administered during adolescence on postnatal days (P) 23-P29, and behavioural responses (sensorimotor gating, recognition memory) and prefrontal cortical (mPFC) function (long-term potentiation (LTP), molecular and proteomic analyses) studies were performed in adult males and females.. Deficits in sensorimotor gating and recognition memory were observed only in MAM-treated males. However, adolescent JQ1 treatment affected animals of both sexes in the control but not MAM-treated groups and reduced behavioural responses in both sexes. An electrophysiological study showed LTP impairments only in male MAM-treated animals, and JQ1 did not affect LTP in the mPFC. In contrast, MAM did not affect activity-dependent gene expression, but JQ1 altered gene expression in both sexes. A proteomic study revealed alterations in MAM-treated groups mainly in males, while JQ1 affected both sexes.. MAM-induced schizophrenia-like abnormalities were observed only in males, while adolescent JQ1 treatment affected memory recognition and altered the molecular and proteomic landscape in the mPFC of both sexes. Thus, transient adolescent inhibition of the BET family might prompt permanent alterations in the mPFC. Topics: Adolescent; Adolescent Development; Animals; Azepines; Disease Models, Animal; Female; Gene Expression Regulation, Developmental; Humans; Long-Term Potentiation; Male; Methylazoxymethanol Acetate; Prefrontal Cortex; Proteomics; Rats; Recognition, Psychology; Schizophrenia; Sex Characteristics; Triazoles | 2021 |
Metabolic profile of methylazoxymethanol model of schizophrenia in rats and effects of three antipsychotics in long-acting formulation.
Mortality in psychiatric patients with severe mental illnesses reaches a 2-3 times higher mortality rate compared to the general population, primarily due to somatic comorbidities. A high prevalence of cardiovascular morbidity can be attributed to the adverse metabolic effects of atypical antipsychotics (atypical APs), but also to metabolic dysregulation present in drug-naïve patients. The metabolic aspects of neurodevelopmental schizophrenia-like models are understudied. This study evaluated the metabolic phenotype of a methylazoxymethanol (MAM) schizophrenia-like model together with the metabolic effects of three APs [olanzapine (OLA), risperidone (RIS) and haloperidol (HAL)] administered via long-acting formulations for 8 weeks in female rats. Body weight, feed efficiency, serum lipid profile, gastrointestinal and adipose tissue-derived hormones (leptin, ghrelin, glucagon and glucagon-like peptide 1) were determined. The lipid profile was assessed in APs-naïve MAM and control cohorts of both sexes. Body weight was not altered by the MAM model, though cumulative food intake and feed efficiency was lowered in the MAM compared to CTR animals. The effect of the APs was also present; body weight gain was increased by OLA and RIS, while OLA induced lower weight gain in the MAM rats. Further, the MAM model showed lower abdominal adiposity, while OLA increased it. Serum lipid profile revealed MAM model-induced alterations in both sexes; total, HDL and LDL cholesterol levels were increased. The MAM model did not exert significant alterations in hormonal parameters except for elevation in leptin level. The results support intrinsic metabolic dysregulation in the MAM model in both sexes, but the MAM model did not manifest higher sensitivity to metabolic effects induced by antipsychotic treatment. Topics: Animals; Antipsychotic Agents; Disease Models, Animal; Female; Haloperidol; Lipid Metabolism; Male; Metabolome; Methylazoxymethanol Acetate; Olanzapine; Rats, Sprague-Dawley; Risperidone; Schizophrenia | 2020 |
Impaired contextual fear-conditioning in MAM rodent model of schizophrenia.
The methylazoxymethanol acetate (MAM) rodent neurodevelopmental model of schizophrenia exhibits aberrant dopamine system activation attributed to hippocampal dysfunction. Context discrimination is a component of numerous behavioral and cognitive functions and relies on intact hippocampal processing. The present study explored context processing behaviors, along with dopamine system activation, during fear learning in the MAM model. Male offspring of dams treated with MAM (20mg/kg, i.p.) or saline on gestational day 17 were used for electrophysiological and behavioral experiments. Animals were tested on the immediate shock fear conditioning paradigm, with either different pre-conditioning contexts or varying amounts of context pre-exposure (0-10 sessions). Amphetamine-induced locomotor activity and dopamine neural activity was measured 1-week after fear conditioning. Saline, but not MAM animals, demonstrated enhanced fear responses following a single context pre-exposure in the conditioning context. One week following fear learning, saline rats with 2 or 7min of context pre-exposure prior to fear conditioning also demonstrated enhanced amphetamine-induced locomotor response relative to MAM animals. Dopamine neuron recordings showed fear learning-induced reductions in spontaneous dopamine neural activity in MAM rats that was further reduced by amphetamine. Apomorphine administration confirmed that reductions in dopamine neuron activity in MAM animals resulted from over excitation, or depolarization block. These data show a behavioral insensitivity to contextual stimuli in MAM rats that coincide with a less dynamic dopamine response after fear learning. Topics: Action Potentials; Amphetamine; Animals; Central Nervous System Stimulants; Conditioning, Classical; Disease Models, Animal; Dopaminergic Neurons; Fear; Female; Learning Disabilities; Locomotion; Male; Methylazoxymethanol Acetate; Neurotoxins; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Rats, Sprague-Dawley; Schizophrenia; Time Factors; Ventral Tegmental Area | 2018 |
Adolescent environmental enrichment prevents the emergence of schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia.
In the present study, we investigated whether exposure to an enriched environment (EE) during adolescence might affect the behavioural dysfunction (sensorimotor gating deficit, memory and social interaction impairments) and neurochemical changes (GAD67 expression, histone methylation) induced by methylazoxymethanol (MAM) in the MAM-E17 rat model of schizophrenia. EE was introduced for 7 days in early adolescence (days 23-29), and behavioural and biochemical studies were performed on adult rats at postnatal day 70. The results showed that exposure to EE prevented the development of adult behavioural deficits induced by prenatal MAM administration. EE also prevented the decrease in GAD67 mRNA and protein levels induced by MAM in the medial prefrontal cortex (mPFC). Moreover, EE inhibited the reductions in the amount of Gad1 bound to H3K4me3 and in the total H3K4me3 protein level induced by prenatal MAM administration in the adult mPFC. However, there was no effect of EE on behaviour or levels of the various neurochemical markers in adult rats prenatally treated with vehicle. Thus, these results indicate that EE exposure during early adolescence may inhibit the development of schizophrenia related symptoms through epigenetic mechanisms that regulate the expression of genes (e.g., Gad1) that are impaired in schizophrenia. Topics: Animals; Disease Models, Animal; Environment; Histones; Housing, Animal; Male; Methylazoxymethanol Acetate; Prefrontal Cortex; Random Allocation; Rats, Wistar; Schizophrenia; Schizophrenic Psychology; Sexual Maturation; Site-Specific DNA-Methyltransferase (Adenine-Specific) | 2018 |
Adolescent Social Isolation Affects Schizophrenia-Like Behavior in the MAM-E17 Model of Schizophrenia.
Social isolation (SI) during adolescence may induce schizophrenia-like behavior. In the present study, we investigated whether adolescent SI might affect the development of schizophrenia-like behavior in the MAM-E17 neurodevelopmental model of schizophrenia. Rats were socially isolated for 10 days during adolescence (postnatal days (P) 30-40), followed by resocialization until late adolescence (P45-P48) or early adulthood (P70-P75); behavioral and neurochemical studies were performed at these ages. The behavioral studies analyzed locomotor activity, social interaction, recognition memory, and sensorimotor gating; GAD65 and GAD67 protein levels were measured in the prefrontal cortex. The results showed that SI did not affect locomotor activity, but it prevented the social interaction deficits induced by MAM administration at both of the analyzed age points. However, SI induced a deficit in recognition memory in the MAM group during adolescence, which was not observed in the MAM-treated, socially housed rats at this age. In adulthood, impairments in recognition memory were detected in both MAM groups. In contrast, SI did not accelerate the appearance of sensorimotor gating deficits in MAM animals during adolescence, and sensorimotor gating impairments were observed in both MAM groups during adulthood. Adolescent SI rearing did not affect any examined behavioral responses in the VEH-treated groups. SI altered the levels of GAD65 and GAD67 proteins during adolescence in both groups; however, the decrease in the level of GAD65 protein was observed only in the adult MAM-SI group. Thus, SI rearing during a defined period of adolescence might have specific effects on the emergence of schizophrenia-like abnormalities in MAM-treated animals. Topics: Age Factors; Animals; Carcinogens; Disease Models, Animal; Embryo, Mammalian; Female; Gene Expression Regulation, Developmental; Glutamate Decarboxylase; Interpersonal Relations; Locomotion; Methylazoxymethanol Acetate; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Rats, Wistar; Recognition, Psychology; Schizophrenia; Schizophrenic Psychology; Sensory Gating; Social Isolation; Statistics, Nonparametric | 2018 |
Altered brain cannabinoid 1 receptor mRNA expression across postnatal development in the MAM model of schizophrenia.
Altered cannabinoid 1 receptor (CB1R) expression has been reported in the brain of subjects with schizophrenia, a developmental mental illness that usually emerges in late adolescence/early adulthood. However, the developmental period at which changes in the CB1R expression appear in schizophrenia is unknown. To gain insight into this factor, we assessed the postnatal developmental trajectory of CB1R expression in the methylazoxymethanol (MAM) model of schizophrenia. Using in situ hybridization with film and grain analyses, CB1R messenger RNA (mRNA) levels were quantified in multiple brain regions, including the medial prefrontal cortex (mPFC), secondary motor cortex, dorsomedial and dorsolateral striatum, dorsal subregions and ventral subiculum of the hippocampus, of MAM-treated rats and normal controls at three developmental periods [juvenile - postnatal day (PD) 30; adolescence - PD45; and adulthood - PD85]. In all brain regions studied, CB1R mRNA levels were highest in juveniles and then decreased progressively toward adolescent and adult levels in control and MAM-treated rats. However, in MAM-treated rats, CB1R mRNA levels were lower in the mPFC at PD85 and higher in the dorsolateral striatum at PD45 and PD85 relative to controls. Cellular analyses confirmed the changes in CB1R mRNA expression in MAM-treated rats. These findings are in accordance with previous studies showing a decrease in the CB1R mRNA expression from juvenile period to adolescence to adulthood in cortical, striatal, and hippocampal regions. Additionally, similar to most of the schizophrenia-like signs observed in the MAM model, embryonic exposure to MAM leads to schizophrenia-related changes in CB1R mRNA expression that only emerge later in development. Topics: Animals; Brain; Disease Models, Animal; Gene Expression Regulation, Developmental; In Situ Hybridization; Male; Methylazoxymethanol Acetate; Random Allocation; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; RNA, Messenger; Schizophrenia | 2018 |
Abnormalities in behaviour, histology and prefrontal cortical gene expression profiles relevant to schizophrenia in embryonic day 17 MAM-Exposed C57BL/6 mice.
Gestational and perinatal disruption of neural development increases the risk of developing schizophrenia (SCZ) later in life. Embryonic day 17 (E17) methylazoxymethanol (MAM) treatment leads to histological, physiological and behavioural abnormalities in post-puberty rats that model the neuropathological and cognitive deficits reported in SCZ patients. However, the validity of E17 MAM-exposed mice to model SCZ has not been explored. Here we treated E17 C57BL/6 mouse dams with various dosages of MAM. We found that this mouse strain was more vulnerable to MAM treatment than rats and there were gender differences in behavioural abnormalities, histological changes and prefrontal cortical gene expression profiles in MAM (7.5 mg/kg)-exposed mice. Both male and female MAM-exposed mice had deficits in prepulse inhibition. Female MAM-exposed mice exhibited mildly increased spontaneous locomotion activity and social recognition deficits, while male mice were normal. Consistently, only female MAM-exposed mice exhibited reduced brain weight, decreased size of prefrontal cortex (PFC) and enlarged lateral ventricles. Transcriptome analysis of the PFC revealed that there were more differentially expressed genes in female MAM-exposed mice than those in male mice. Moreover, expression of Pvalb, Arc and genes in their association networks were downregulated in the PFC of female MAM-exposed mice. These results indicate that E17 MAM-exposure in C57BL/6 mice leads to behavioural changes that model certain deficits reported in SCZ patients. MAM-exposed female mice may be used to study gene expression changes, inhibitory neural circuit dysfunction and glutamatergic synaptic plasticity deficits with a possible relation to those in the brains of SCZ patients. Topics: Animals; Brain; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Hypertrophy; Lateral Ventricles; Male; Methylazoxymethanol Acetate; Mice; Mice, Inbred C57BL; Motor Activity; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Prepulse Inhibition; Schizophrenia; Schizophrenic Psychology; Sex Characteristics; Social Behavior; Transcriptome | 2018 |
Suppression of Methamphetamine Self-Administration by Ketamine Pre-treatment Is Absent in the Methylazoxymethanol (MAM) Rat Model of Schizophrenia.
Ketamine may prove to be a potential candidate in treating the widespread drug addiction/substance abuse epidemic among patients with schizophrenia. Clinical studies have shown ketamine to reduce cocaine and heroin cravings. However, the use of ketamine remains controversial as it may exacerbate the symptoms of schizophrenia. Therefore, the aim of this study is to characterize the effects of ketamine on drug addiction in schizophrenia using the methylazoxymethanol (MAM) acetate rat model on operant IV methamphetamine (METH) self-administration. MAM was administered intraperitoneally (22 mg/kg) on gestational day 17. Locomotor activity test and later IV self-administration (IVSA) were then performed in the male offspring followed by a period of forced abstinence and relapse of METH taking. After reaching stable intakes in the relapse phase, ketamine (5 mg/kg) was administered intraperitoneally 30 min prior to the self-administration session. As documented previously, the MAM rats showed a lack of habituation in the locomotor activity test but developed stable maintenance of METH self-administration with no difference in operant behaviour to control animals. Results show that ketamine treatment significantly reduced the METH intake in the control animals but not in MAM animals. Ketamine effect on METH self-administration may be explained by increased glutamatergic signalling in the prefrontal cortex caused by the N-methyl-D-aspartate antagonism and disinhibition of GABA interneurons which was shown to be impaired in the MAM rats. This mechanism may at least partly explain the clinically proven anti-craving potential of ketamine and allow development of more specific anti-craving medications with fewer risks. Topics: Analysis of Variance; Animals; Central Nervous System Stimulants; Conditioning, Operant; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Ketamine; Locomotion; Methamphetamine; Methylazoxymethanol Acetate; Rats; Rats, Sprague-Dawley; Schizophrenia; Self Administration | 2017 |
Epigenetic mechanisms underlying NMDA receptor hypofunction in the prefrontal cortex of juvenile animals in the MAM model for schizophrenia.
Schizophrenia (SCZ) is characterized not only by psychosis, but also by working memory and executive functioning deficiencies, processes that rely on the prefrontal cortex (PFC). Because these cognitive impairments emerge prior to psychosis onset, we investigated synaptic function during development in the neurodevelopmental methylazoxymethanol (MAM) model for SCZ. Specifically, we hypothesize that N-methyl-D-aspartate receptor (NMDAR) hypofunction is attributable to reductions in the NR2B subunit through aberrant epigenetic regulation of gene expression, resulting in deficient synaptic physiology and PFC-dependent cognitive dysfunction, a hallmark of SCZ. Using western blot and whole-cell patch-clamp electrophysiology, we found that the levels of synaptic NR2B protein are significantly decreased in juvenile MAM animals, and the function of NMDARs is substantially compromised. Both NMDA-mEPSCs and synaptic NMDA-eEPSCs are significantly reduced in prelimbic PFC (plPFC). This protein loss during the juvenile period is correlated with an aberrant increase in enrichment of the epigenetic transcriptional repressor RE1-silencing transcription factor (REST) and the repressive histone marker H3K27me3 at the Grin2b promoter, as assayed by ChIP-quantitative polymerase chain reaction. Glutamate hypofunction has been a prominent hypothesis in the understanding of SCZ pathology; however, little attention has been given to the NMDAR system in the developing PFC in models for SCZ. Our work is the first to confirm that NMDAR hypofunction is a feature of early postnatal development, with epigenetic hyper-repression of the Grin2b promoter being a contributing factor. The selective loss of NR2B protein and subsequent synaptic dysfunction weakens plPFC function during development and may underlie early cognitive impairments in SCZ models and patients. Read the Editorial Highlight for this article on page 264. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Animals, Newborn; Cognition Disorders; Disease Models, Animal; Epigenesis, Genetic; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Female; Gene Expression Regulation, Developmental; In Vitro Techniques; Male; Methylazoxymethanol Acetate; N-Methylaspartate; Neurons; Patch-Clamp Techniques; Prefrontal Cortex; Pregnancy; Rats; Receptors, N-Methyl-D-Aspartate; Schizophrenia | 2017 |
Reactivity to addictive drugs in the methylazoxymethanol (MAM) model of schizophrenia in male and female rats.
Patients with schizophrenia often suffer comorbid substance abuse regardless of gender. However, the vast majority of studies are only conducted in male subjects. Therefore, the aim of these experiments is to assess addictive behaviors of both sexes in a neurodevelopmental model of schizophrenia induced by prenatal methylazoxymethanol (MAM) acetate exposure.. MAM (22 mg/kg) was administered intraperitoneally on gestational day 17. Two studies were performed in the offspring: (1) an alcohol-drinking procedure to assess daily intake of 20% alcohol and relapse-like behavior after a period of forced abstinence; (2) Methamphetamine (METH) intravenous self administration (IVSA) followed by forced abstinence and reinstatement phases.. MAM exposure during the prenatal period did not change alcohol drinking regardless of sex. However, MAM females showed higher alcohol consumption in comparison to MAM males. The METH IVSA study revealed only a modest increase of drug consumption in MAM males, while there was no difference between the female groups. Reinstatement data showed no effect of the MAM model in either sex, but suggested increased responding in female rats.. This study suggests that female sex and schizophrenia-like phenotype may work synergistically to enhance alcohol consumption. However, future research is needed to establish paradigms in which these findings would be readily assessed to test anti-addiction treatments. Topics: Alcohol Drinking; Animals; Behavior, Animal; Disease Models, Animal; Female; Male; Methamphetamine; Methylazoxymethanol Acetate; Pregnancy; Rats; Rats, Sprague-Dawley; Schizophrenia; Sex Characteristics | 2017 |
MAM (E17) rodent developmental model of neuropsychiatric disease: disruptions in learning and dysregulation of nucleus accumbens dopamine release, but spared executive function.
Gestational day 17 methylazoxymethanol (MAM) treatment has been shown to reproduce, in rodents, some of the alterations in cortical and mesolimbic circuitries thought to contribute to schizophrenia.. We characterized the behavior of MAM animals in tasks dependent on these circuitries to see what behavioral aspects of schizophrenia the model captures. We then characterized the integrity of mesolimbic dopamine neurotransmission in a subset of animals used in the behavioral experiments.. MAM animals' capacity for working memory, attention, and resilience to distraction was tested with two different paradigms. Cue-reward learning and motivation were assayed with Pavlovian conditioned approach. Measurements of electrically stimulated phasic and tonic DA release in the nucleus accumbens with fast-scan cyclic voltammetry were obtained from the same animals used in the Pavlovian task.. MAM animals' basic attentional capacities were intact. MAM animals took longer to acquire the working memory task, but once learned, performed at the same level as shams. MAM animals were also slower to develop a Pavlovian conditioned response, but otherwise no different from controls. These same animals showed alterations in terminal DA release that were unmasked by an amphetamine challenge.. The predominant behavioral-cognitive feature of the MAM model is a learning impairment that is evident in acquisition of executive function tasks as well as basic Pavlovian associations. MAM animals also have dysregulated terminal DA release, and this may contribute to observed behavioral differences. The MAM model captures some functional impairments of schizophrenia, particularly those related to acquisition of goal-directed behavior. Topics: Amphetamine; Animals; Conditioning, Classical; Disease Models, Animal; Dopamine; Executive Function; Learning; Male; Methylazoxymethanol Acetate; Motivation; Nucleus Accumbens; Rats, Sprague-Dawley; Reward; Schizophrenia; Schizophrenic Psychology | 2015 |
Valproic acid (VPA) reduces sensorimotor gating deficits and HDAC2 overexpression in the MAM animal model of schizophrenia.
Evidence indicates that the disruption of epigenetic processes might play an important role in the development of schizophrenia symptoms. The present study investigated the role of histone acetylation in the development of sensorimotor gating deficits in a neurodevelopmental model of schizophrenia based on prenatal administration of methylazoxymethanol (MAM) at embryonic day 17.. Valproic acid (VPA), an inhibitor of class I histone deacetylases, was administered (250 mg/kg, twice a day for 7 consecutive days) in early adolescence (23rd-29th day) or early adulthood (63rd-69th day) to rats. The effect of VPA treatment on the sensorimotor gating deficits induced by prenatal MAM administration was analyzed in adult rats at postnatal day 70 (P70). In addition, the effects of VPA administration (at the same doses) on MAM-induced changes in the levels of histone H3 acetylation at lysine 9 (H3K9ac) and histone deacetylase 2 (HDAC2) in the medial prefrontal cortex (mPFC) were determined at P70 using Western blot.. VPA administration in either adolescence or early adulthood prevented the sensorimotor gating deficits induced by MAM. However, VPA administration in early adolescence or early adulthood did not alter H3K9ac levels induced by MAM. In contrast, VPA administration in either adolescence or adulthood prevented the increase in HDAC2 level evoked by MAM.. Prenatal MAM administration impaired histone acetylation in the mPFC, which might be involved in the development of some of the neurobehavioral deficits (i.e., sensorimotor gating deficits) associated with schizophrenia. Blockade of HDAC2 might prevent the disruption of sensorimotor gating in adulthood. Topics: Acetylation; Animals; Disease Models, Animal; Female; Gene Expression Regulation, Enzymologic; Histone Deacetylase 2; Histones; Male; Methylazoxymethanol Acetate; Prefrontal Cortex; Rats; Schizophrenia; Sensory Gating; Valproic Acid | 2015 |
Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia.
Adolescent exposure to cannabinoids in vulnerable individuals is proposed to be a risk factor for psychiatric conditions later in life, particularly schizophrenia. Evidence from studies in animals has indicated that a combination of repeated pubertal cannabinoid administration with either neonatal prefrontocortical lesion, isolation rearing, or chronic NMDA receptor antagonism administration induces enhanced schizophrenia-like behavioral disruptions. The effects of adolescent exposure to CB1 receptor agonists, however, have not been tested in a developmental disruption model of schizophrenia.. This was tested in the methylazoxymethanol (MAM) model, in which repeated treatment with the synthetic cannabinoid agonist WIN 55,212-2 (WIN; 1.2mg/kg) was extended over 25 days throughout puberty (postnatal days 40-65) in control and MAM rats. The rats received 20 injections, which were delivered irregularly to mimic the human condition. Adult rats were tested for attentional set-shifting task and locomotor response to amphetamine, which was compared with in vivo recording from ventral tegmental area (VTA) dopamine (DA) neurons.. MAM-treated rats showed impairment in the attentional set-shifting task, augmented locomotor response to amphetamine administration, and an increased number of spontaneously active DA neurons in the VTA. Interestingly, pubertal WIN treatment in normal animals induced similar changes at adulthood as those observed in MAM-treated rats, supporting the notion that adolescence exposure to cannabinoids may represent a risk factor for developing schizophrenia-like signs at adulthood. However, contrary to expectations, pubertal WIN administration did not exacerbate the behavioral and electrophysiological changes in MAM-treated rats beyond that observed in WIN-treated saline rats (Sal). Indeed, WIN treatment actually attenuated the locomotor response to amphetamine in MAM rats without impacting DA neuron activity states.. Taken together, the present results indicate that the impact of cannabinoids during puberty/adolescence on schizophrenia models is more complex than may be predicted. Topics: Amphetamine; Animals; Attention; Benzoxazines; Cannabinoids; Central Nervous System Stimulants; Disease Models, Animal; Dopaminergic Neurons; Executive Function; Female; Male; Methylazoxymethanol Acetate; Morpholines; Motor Activity; Naphthalenes; Neuropsychological Tests; Pregnancy; Prenatal Exposure Delayed Effects; Rats, Sprague-Dawley; Schizophrenia; Schizophrenic Psychology; Ventral Tegmental Area | 2014 |
Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.
Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia. Topics: Alkylating Agents; Animals; Behavior, Animal; Dopamine; Dopamine Agonists; Dopamine D2 Receptor Antagonists; Dopaminergic Neurons; Dose-Response Relationship, Drug; Female; Methylazoxymethanol Acetate; Motor Activity; Nucleus Accumbens; Quinpirole; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; Receptors, Dopamine D2; Receptors, Dopamine D4; Schizophrenia; Ventral Tegmental Area | 2012 |
Effect of antipsychotics on spontaneous hyperactivity and hypersensitivity to MK-801-induced hyperactivity in rats prenatally exposed to methylazoxymethanol.
Exposure to methylazoxymethanol (MAM) at embryonic day 17 (E17) in the rat has been proposed to be a promising model for schizophrenia that mimics behavioural abnormalities and deficits in prefrontal cortex (PFC) networks. In this study, we investigated for the first time the effects of antipsychotics on abnormal behaviours observed in prenatally MAM-exposed rats. We first examined spontaneous and MK-801-induced locomotor activity in an open field in adult E17 MAM- or saline-exposed rats. Then, the effect of single injections of haloperidol, clozapine and risperidone was investigated in MAM- or sham-exposed rats on spontaneous and MK-801 (0.05 mg/kg)-induced hyperactivity. Risperidone more selectively counteracted the spontaneous hyperactivity in MAM than in sham rats, while haloperidol and clozapine induced similar effects on spontaneous locomotion in both groups. The main result of this study is that all the tested antipsychotics were more effective in attenuating the MK-801-induced hyperlocomotion in MAM than in sham rats. These findings further support the validity of E17 MAM exposure as a model for schizophrenia and add to its heuristic value in screening therapies for schizophrenia. Topics: Animals; Antipsychotic Agents; Disease Models, Animal; Dizocilpine Maleate; Female; Hyperkinesis; Methylazoxymethanol Acetate; Motor Activity; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Rats, Sprague-Dawley; Schizophrenia | 2011 |
Neuropathological and Reelin deficiencies in the hippocampal formation of rats exposed to MAM; differences and similarities with schizophrenia.
Adult rats exposed to methylazoxymethanol (MAM) at embryonic day 17 (E17) consistently display behavioral characteristics similar to that observed in patients with schizophrenia and replicate neuropathological findings from the prefrontal cortex of psychotic individuals. However, a systematic neuropathological analysis of the hippocampal formation and the thalamus in these rats is lacking. It is also unclear if reelin, a protein consistently associated with schizophrenia and potentially involved in the mechanism of action of MAM, participates in the neuropathological effects of this compound. Therefore, a thorough assessment including cytoarchitectural and neuromorphometric measurements of eleven brain regions was conducted. Numbers of reelin positive cells and reelin expression and methylation levels were also studied.. Compared to untreated rats, MAM-exposed animals showed a reduction in the volume of entorhinal cortex, hippocampus and mediodorsal thalamus associated with decreased neuronal soma. The entorhinal cortex also showed laminar disorganization and neuronal clusters. Reelin methylation in the hippocampus was decreased whereas reelin positive neurons and reelin expression were unchanged.. Our results indicate that E17-MAM exposure reproduces findings from the hippocampal formation and the mediodorsal thalamus of patients with schizophrenia while providing little support for reelin's involvement. Moreover, these results strongly suggest MAM-treated animals have a diminished neuropil, which likely arises from abnormal neurite formation; this supports a recently proposed pathophysiological hypothesis for schizophrenia. Topics: Animals; Brain Mapping; Cell Adhesion Molecules, Neuronal; Embryonic Development; Extracellular Matrix Proteins; Hippocampus; Humans; Mental Disorders; Methylation; Methylazoxymethanol Acetate; Nerve Tissue Proteins; Neurons; Rats; Reelin Protein; Schizophrenia; Serine Endopeptidases; Teratogens; Thalamus | 2010 |
Gestational methylazoxymethanol acetate treatment impairs select cognitive functions: parallels to schizophrenia.
Gestational methylazoxymethanol acetate (MAM) exposure has been suggested to produce neural and behavioral abnormalities similar to those seen in schizophrenia. In order to assess MAM treatment as a model of schizophrenia, pregnant female rats were injected with MAM (22 mg/kg) on gestational day 17 and their offspring were assessed in adulthood on a series of cognitive tasks. The first experiment involved an attentional set-shifting task, a rodent analog of the Wisconsin card sort task. In experiment 2, animals were tested on the 5-choice serial reaction time task, a rodent analog of the continuous performance task. In the final experiment animals were assessed on a differential reinforcement of low rate of responding 20 s schedule of reinforcement (DRL-20), a task that is sensitive to changes in inhibitory control. In the first experiment, MAM-treated animals required a greater number of trials than controls to successfully learn an extradimensional shift on the set-shifting task, and had difficulties in learning to reverse a previously acquired discrimination. In contrast, MAM-treated animals showed little impairment on the 5-choice task, aside from a modest but consistent increase in premature responding. Finally, MAM exposed animals showed substantial impairments in DRL performance. Post-mortem analysis of brain tissue showed significant decreases in tissue weight in the hippocampus, parietal cortex, prefrontal cortex, and dorsal striatum of MAM-treated animals. These results support the notion that MAM treatment may simulate some aspects of schizophrenic cognition. Topics: Animals; Atrophy; Brain; Brain Damage, Chronic; Cognition Disorders; Discrimination Learning; Disease Models, Animal; Female; Learning Disabilities; Male; Methylazoxymethanol Acetate; Neuropsychological Tests; Pregnancy; Prenatal Exposure Delayed Effects; Psychomotor Performance; Rats; Reinforcement, Psychology; Schizophrenia; Teratogens | 2007 |
Alterations in prefrontal glutamatergic and noradrenergic systems following MK-801 administration in rats prenatally exposed to methylazoxymethanol at gestational day 17.
Prenatal methylazoxymethanol (MAM) administration at gestational day 17 has been shown to induce in adult rats schizophrenia-like behaviours as well as morphological and/or functional abnormalities in structures such as the hippocampus, medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc), consistent with human data.. The aim of the present study was to further characterize the neurochemical alterations associated with this neurodevelopmental animal model of schizophrenia.. We performed simultaneous measurements of locomotor activity and extracellular concentrations of glutamate, dopamine and noradrenaline in the mPFC and the NAcc of adult rats prenatally exposed to MAM or saline after acute systemic injection of a noncompetitive NMDA antagonist, MK-801 (0.1 mg/kg s.c.).. A significant attenuation of the MK-801-induced increase in glutamate levels associated with a potentiation of the increase in noradrenaline concentrations was found in the mPFC of MAM-exposed rats, whereas no significant change was observed in the NAcc. MAM-exposed rats also exhibited an exaggerated locomotor hyperactivity, in line with the exacerbation of symptoms reported in schizophrenic patients after administration of noncompetitive NMDA antagonists.. Given the importance of the mPFC in regulating the hyperlocomotor effect of NMDA antagonists, our results suggest that the prefrontal neurochemical alterations induced by MK-801 may sustain the exaggerated locomotor response in MAM-exposed rats. Topics: Animals; Behavior, Animal; Disease Models, Animal; Dizocilpine Maleate; Dopamine; Excitatory Amino Acid Antagonists; Female; Glutamic Acid; Male; Methylazoxymethanol Acetate; Microdialysis; Motor Activity; Norepinephrine; Nucleus Accumbens; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Schizophrenia | 2007 |
Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia.
Evidence supports a dysregulation of subcortical dopamine (DA) system function as a common etiology of psychosis; however, the factors responsible for this aberrant DA system responsivity have not been delineated. Here, we demonstrate in an animal model of schizophrenia that a pathologically enhanced drive from the ventral hippocampus (vHipp) can result in aberrant dopamine neuron signaling. Adult rats in which development was disrupted by prenatal methylazoxymethanol acetate (MAM) administration display a significantly greater number of spontaneously firing ventral tegmental DA neurons. This appears to be a consequence of excessive hippocampal activity because, in MAM-treated rats, vHipp inactivation completely reversed the elevated DA neuron population activity and also normalized the augmented amphetamine-induced locomotor behavior. These data provide a direct link between hippocampal dysfunction and the hyper-responsivity of the DA system that is believed to underlie the augmented response to amphetamine in animal models and psychosis in schizophrenia patients. Topics: Action Potentials; Animals; Disease Models, Animal; Dopamine; Hippocampus; Male; Methylazoxymethanol Acetate; Rats; Rats, Sprague-Dawley; Schizophrenia | 2007 |
Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia.
Treatment of rats with methylazoxymethanol (MAM) on gestational day (GD)17 disrupts corticolimbic development in the offspring (MAM-GD17 rats) and leads to abnormalities in adult MAM-GD17 rats resembling those described in schizophrenic patients. The underlying changes in specific cortical and limbic cell populations remain to be characterised. In schizophrenia, decreases in inhibitory gamma-aminobutyric acid (GABA)-containing interneurons that express the calcium-binding protein parvalbumin have been reported in the prefrontal cortex and hippocampus. In this study we analysed the expression of parvalbumin (PV), calretinin (CR) and calbindin (CB) in the prefrontal cortex and hippocampus of MAM-GD17 rats. Exposure in utero to MAM led to a significant decrease in the number of neurons expressing PV in the hippocampus, but not the prefrontal cortex. Neurons expressing CR or CB were not affected in either structure. The neurochemical changes in MAM-GD17 rats were accompagnied by increased hyperlocomotion after administration of phencyclidine (PCP), analogous to the hypersensitivity of schizophrenic patients to PCP. Therefore, the developmental MAM-GD17 model reproduces key neurochemical and behavioural features that reflect cortical and subcortical dysfunction in schizophrenia, and could be a useful tool in the development of new antipsychotic drugs. Topics: Analysis of Variance; Animals; Behavior, Animal; Cell Count; Disease Models, Animal; Embryo, Mammalian; Excitatory Amino Acid Antagonists; Female; Gene Expression; Hippocampus; Immunohistochemistry; Methylazoxymethanol Acetate; Motor Activity; Neurons; Parvalbumins; Phencyclidine; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Rats, Wistar; Schizophrenia; Time Factors | 2006 |
Cognitive deficits caused by late gestational disruption of neurogenesis in rats: a preclinical model of schizophrenia.
Late gestational disruption of neurogenesis in rats has been shown to induce behavioral abnormalities thought to mimic aspects of positive and negative symptoms of schizophrenia. Furthermore, it has been shown that the morphological changes produced by the perturbation are relevant to schizophrenia with reduced thickness of the hippocampus, thalamus, and cortical regions. In addition to the positive and negative symptoms, schizophrenia is associated with deficits in a wide variety of cognitive domains. In the present studies, we assessed whether the cognitive deficits are modeled by disruption of neurogenesis late during gestation (gestational day 17) in the rat. In the battery of tests utilized, we describe that rats in which neurogenesis was disrupted have deficits in a reversal-learning paradigm of the Morris water maze and in object recognition, and that they exhibit perseveration in the Porsolt forced swimming test. Additionally, we found deficient associative learning in an acquisition of an active avoidance paradigm and deficits in latent inhibition. No deficits were observed in the reference memory version of the Morris water maze and in a non-match-to position experiment, showing that the deficits are limited to certain aspects of cognition. Topics: Animals; Association Learning; Cognition Disorders; Conditioning, Operant; Disease Models, Animal; Exploratory Behavior; Female; Maze Learning; Methylazoxymethanol Acetate; Nervous System; Pregnancy; Prenatal Exposure Delayed Effects; Psychomotor Performance; Rats; Rats, Wistar; Recognition, Psychology; Reversal Learning; Schizophrenia; Swimming; Teratogens | 2005 |