methylatropine has been researched along with Status-Epilepticus* in 5 studies
5 other study(ies) available for methylatropine and Status-Epilepticus
Article | Year |
---|---|
Increased gyrification and aberrant adult neurogenesis of the dentate gyrus in adult rats.
A remarkable example of maladaptive plasticity is the development of epilepsy after a brain insult or injury to a normal animal or human. A structure that is considered central to the development of this type of epilepsy is the dentate gyrus (DG), because it is normally a relatively inhibited structure and its quiescence is thought to reduce hippocampal seizure activity. This characteristic of the DG is also considered to be important for normal hippocampal-dependent cognitive functions. It has been suggested that the brain insults which cause epilepsy do so because they cause the DG to be more easily activated. One type of brain insult that is commonly used is induction of severe seizures (status epilepticus; SE) by systemic injection of a convulsant drug. Here we describe an alteration in the DG after this type of experimental SE that may contribute to chronic seizures that has not been described before: large folds or gyri that develop in the DG by 1 month after SE. Large gyri appeared to increase network excitability because epileptiform discharges recorded in hippocampal slices after SE were longer in duration when recorded inside gyri relative to locations outside gyri. Large gyri may also increase excitability because immature adult-born neurons accumulated at the base of gyri with time after SE, and previous studies have suggested that abnormalities in adult-born DG neurons promote seizures after SE. In summary, large gyri after SE are a common finding in adult rats, show increased excitability, and are associated with the development of an abnormal spatial distribution of adult-born neurons. Together these alterations may contribute to chronic seizures and associated cognitive comorbidities after SE. Topics: Analysis of Variance; Animals; Atropine Derivatives; Bicuculline; Bromodeoxyuridine; Dentate Gyrus; Excitatory Amino Acid Agonists; Female; GABA-A Receptor Antagonists; In Vitro Techniques; Kainic Acid; Male; Muscarinic Agonists; Neurogenesis; Neuronal Plasticity; Neurons; Parasympatholytics; Phosphopyruvate Hydratase; Pilocarpine; Rats; Rats, Sprague-Dawley; Status Epilepticus; Time Factors | 2017 |
Alpha-Linolenic Acid-Induced Increase in Neurogenesis is a Key Factor in the Improvement in the Passive Avoidance Task After Soman Exposure.
Exposure to organophosphorous (OP) nerve agents such as soman inhibits the critical enzyme acetylcholinesterase (AChE) leading to excessive acetylcholine accumulation in synapses, resulting in cholinergic crisis, status epilepticus and brain damage in survivors. The hippocampus is profoundly damaged after soman exposure leading to long-term memory deficits. We have previously shown that treatment with three sequential doses of alpha-linolenic acid, an essential omega-3 polyunsaturated fatty acid, increases brain plasticity in naïve animals. However, the effects of this dosing schedule administered after a brain insult and the underlying molecular mechanisms in the hippocampus are unknown. We now show that injection of three sequential doses of alpha-linolenic acid after soman exposure increases the endogenous expression of mature BDNF, activates Akt and the mammalian target of rapamycin complex 1 (mTORC1), increases neurogenesis in the subgranular zone of the dentate gyrus, increases retention latency in the passive avoidance task and increases animal survival. In sharp contrast, while soman exposure also increases mature BDNF, this increase did not activate downstream signaling pathways or neurogenesis. Administration of the inhibitor of mTORC1, rapamycin, blocked the alpha-linolenic acid-induced neurogenesis and the enhanced retention latency but did not affect animal survival. Our results suggest that alpha-linolenic acid induces a long-lasting neurorestorative effect that involves activation of mTORC1 possibly via a BDNF-TrkB-mediated mechanism. Topics: alpha-Linolenic Acid; Animals; Antigens, Nuclear; Atropine Derivatives; Avoidance Learning; Brain Damage, Chronic; Brain-Derived Neurotrophic Factor; Diazepam; DNA Replication; Doublecortin Domain Proteins; Electroshock; Exploratory Behavior; Hippocampus; Male; Mechanistic Target of Rapamycin Complex 1; Microtubule-Associated Proteins; Multiprotein Complexes; Nerve Tissue Proteins; Neurogenesis; Neuropeptides; Neuroprotective Agents; Neurotoxins; Oximes; Proto-Oncogene Proteins c-akt; Pyridinium Compounds; Rats; Rats, Sprague-Dawley; Receptor, trkB; Signal Transduction; Sirolimus; Soman; Status Epilepticus; TOR Serine-Threonine Kinases | 2015 |
Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy.
Dentate granule cell axon (mossy fiber) sprouting is a common abnormality in patients with temporal lobe epilepsy. Mossy fiber sprouting creates an aberrant positive-feedback network among granule cells that does not normally exist. Its role in epileptogenesis is unclear and controversial. If it were possible to block mossy fiber sprouting from developing after epileptogenic treatments, its potential role in the pathogenesis of epilepsy could be tested. Previous attempts to block mossy fiber sprouting have been unsuccessful. The present study targeted the mammalian target of rapamycin (mTOR) signaling pathway, which regulates cell growth and is blocked by rapamycin. Rapamycin was focally, continuously, and unilaterally infused into the dorsal hippocampus for prolonged periods beginning within hours after rats sustained pilocarpine-induced status epilepticus. Infusion for 1 month reduced aberrant Timm staining (a marker of mossy fibers) in the granule cell layer and molecular layer. Infusion for 2 months inhibited mossy fiber sprouting more. However, after rapamycin infusion ceased, aberrant Timm staining developed and approached untreated levels. When onset of infusion began after mossy fiber sprouting had developed for 2 months, rapamycin did not reverse aberrant Timm staining. These findings suggest that inhibition of the mTOR signaling pathway suppressed development of mossy fiber sprouting. However, suppression required continual treatment, and rapamycin treatment did not reverse already established axon reorganization. Topics: Animals; Anticonvulsants; Atropine Derivatives; Axons; Dentate Gyrus; Disease Models, Animal; Epilepsy, Temporal Lobe; Immunohistochemistry; Infusions, Parenteral; Injections, Intraperitoneal; Male; Mossy Fibers, Hippocampal; Muscarinic Agonists; Neural Inhibition; Neurons; Parasympatholytics; Pilocarpine; Protein Kinases; Rats; Rats, Sprague-Dawley; Signal Transduction; Sirolimus; Staining and Labeling; Status Epilepticus; Time Factors; TOR Serine-Threonine Kinases | 2009 |
Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy.
Patients and models of temporal lobe epilepsy have fewer inhibitory interneurons in the dentate gyrus than controls, but it is unclear whether granule cell inhibition is reduced. We report the loss of GABAergic inhibition of granule cells in the temporal dentate gyrus of pilocarpine-induced epileptic rats. In situ hybridization for GAD65 mRNA and immunocytochemistry for parvalbumin and somatostatin confirmed the loss of inhibitory interneurons. In epileptic rats, granule cells had prolonged EPSPs, and they discharged more action potentials than controls. Although the conductances of evoked IPSPs recorded in normal ACSF were not significantly reduced and paired-pulse responses showed enhanced inhibition of granule cells from epileptic rats, more direct measures of granule cell inhibition revealed significant deficiencies. In granule cells from epileptic rats, evoked monosynaptic IPSP conductances were <40% of controls, and the frequency of GABA(A) receptor-mediated spontaneous and miniature IPSCs (mIPSCs) was <50% of controls. Within 3-7 d after pilocarpine-induced status epilepticus, miniature IPSC frequency had decreased, and it remained low, without functional evidence of compensatory synaptogenesis by GABAergic axons in chronically epileptic rats. Both parvalbumin- and somatostatin-immunoreactive interneuron numbers and the frequency of both fast- and slow-rising GABA(A) receptor-mediated mIPSCs were reduced, suggesting that loss of inhibitory synaptic input to granule cells occurred at both proximal/somatic and distal/dendritic sites. Reduced granule cell inhibition in the temporal dentate gyrus preceded the onset of spontaneous recurrent seizures by days to weeks, so it may contribute, but is insufficient, to cause epilepsy. Topics: Action Potentials; Animals; Atropine Derivatives; Cell Count; Dentate Gyrus; Disease Models, Animal; Electric Stimulation; Epilepsy, Temporal Lobe; Evoked Potentials; In Vitro Techniques; Interneurons; Male; Membrane Potentials; Neural Inhibition; Neurons; Patch-Clamp Techniques; Pilocarpine; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Sensory Thresholds; Status Epilepticus | 2003 |
Muscarinic depression of synaptic transmission in the epileptogenic GABA withdrawal syndrome focus.
The GABA withdrawal syndrome (GWS) is a model of local status epilepticus consecutive to the interruption of a prolonged GABA infusion into the rat somatomotor cortex. Bursting patterns in slices from GWS rats include intrinsic bursts of action potentials (APs) induced by intracellular depolarizing current injection and/or paroxysmal depolarization shifts (PDSs) induced by white matter stimulation. Possible changes in the effects of cholinergic drugs after in vivo induction of GWS were investigated on bursting cells (n = 30) intracellularly recorded in neocortical slices. In GWS slices, acetylcholine (Ach, 200-1000 microM) or carbachol (Cch, 50 microM) applications increased the number of bursts induced by depolarizing current injection while synaptically induced PDSs were significantly diminished (by 50-60%) or even blocked independently of the cholinergic-induced depolarization. The intrinsic burst facilitation and PDS depression provoked by Ach or Cch were mimicked by methyl-acetylcholine (mAch, 100-400 microM, n = 11), were reversed by atropine application (1-50 microM, n = 3), and were not mimicked by nicotine (50-100 microM, n = 4), indicating the involvement of muscarinic receptors. In contrast, in nonbursting cells from the same epileptic area (n = 42) or from equivalent area in control rats (n = 24), a nonsignificant muscarinic depression of EPSPs was induced by Cch and Ach. The mAch depression of excitatory postsynaptic potential (EPSPs) was significantly lower than that seen for PDSs in GWS rats. None of the cholinergic agonists caused bursting appearance in these cells. Therefore the present study demonstrates a unique implication of muscarinic receptors in exerting opposite effects on intrinsic membrane properties and on synaptic transmission in epileptiform GWS. Muscarinic receptor mechanisms may therefore have a protective role against the development and spread of epileptiform activity from the otherwise-activated epileptic focus. Topics: Action Potentials; Animals; Atropine Derivatives; Disease Models, Animal; Excitatory Postsynaptic Potentials; gamma-Aminobutyric Acid; Male; Motor Cortex; Muscarinic Agonists; Muscarinic Antagonists; Nicotine; Patch-Clamp Techniques; Pyramidal Cells; Rats; Rats, Wistar; Reaction Time; Receptors, Muscarinic; Status Epilepticus; Substance Withdrawal Syndrome; Synaptic Transmission | 2001 |