methylatropine and Disease-Models--Animal

methylatropine has been researched along with Disease-Models--Animal* in 19 studies

Other Studies

19 other study(ies) available for methylatropine and Disease-Models--Animal

ArticleYear
Toll-like receptor 9 plays a key role in the autonomic cardiac and baroreflex control of arterial pressure.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2015, Apr-15, Volume: 308, Issue:8

    The crosstalk between the immune and the autonomic nervous system may impact the cardiovascular function. Toll-like receptors are components of the innate immune system and play developmental and physiological roles. Toll-like receptor 9 (TLR9) is involved in the pathogenesis of cardiovascular diseases, such as hypertension and heart failure. Since such diseases are commonly accompanied by autonomic imbalance and lower baroreflex sensitivity, we hypothesized that TLR9 modulates cardiac autonomic and baroreflex control of arterial pressure (AP). Toll-like receptor 9 knockout (TLR9 KO) and wild-type (WT) mice were implanted with catheters into carotid artery and jugular vein and allowed to recover for 3 days. After basal recording of AP, mice received methyl-atropine or propranolol. AP and pulse interval (PI) variability were evaluated in the time and frequency domain (spectral analysis), as well as by multiscale entropy. Spontaneous baroreflex was studied by sequence technique. Behavioral and cardiovascular responses to fear-conditioning stress were also evaluated. AP was similar between groups, but TLR9 KO mice exhibited lower basal heart rate (HR). AP variability was not different, but PI variability was increased in TLR9 KO mice. The total entropy was higher in TLR9 KO mice. Moreover, baroreflex function was found higher in TLR9 KO mice. Atropine-induced tachycardia was increased in TLR9 KO mice, whereas the propranolol-induced bradycardia was similar to WT mice. TLR9 KO mice exhibit increased behavioral and decreased tachycardia responses to fear-conditioning stress. In conclusion, our findings suggest that TLR9 may negatively modulate cardiac vagal tone and baroreflex in mice.

    Topics: Animals; Arterial Pressure; Atropine Derivatives; Baroreflex; Behavior, Animal; Bradycardia; Cardiovascular System; Conditioning, Psychological; Disease Models, Animal; Fear; Heart Rate; Immunity, Innate; Male; Mice, Inbred C57BL; Mice, Knockout; Propranolol; Signal Transduction; Tachycardia; Time Factors; Toll-Like Receptor 9; Vagus Nerve

2015
Endogenous ghrelin attenuates pressure overload-induced cardiac hypertrophy via a cholinergic anti-inflammatory pathway.
    Hypertension (Dallas, Tex. : 1979), 2015, Volume: 65, Issue:6

    Cardiac hypertrophy, which is commonly caused by hypertension, is a major risk factor for heart failure and sudden death. Endogenous ghrelin has been shown to exert a beneficial effect on cardiac dysfunction and postinfarction remodeling via modulation of the autonomic nervous system. However, ghrelin's ability to attenuate cardiac hypertrophy and its potential mechanism of action are unknown. In this study, cardiac hypertrophy was induced by transverse aortic constriction in ghrelin knockout mice and their wild-type littermates. After 12 weeks, the ghrelin knockout mice showed significantly increased cardiac hypertrophy compared with wild-type mice, as evidenced by their significantly greater heart weight/tibial length ratios (9.2±1.9 versus 7.9±0.8 mg/mm), left ventricular anterior wall thickness (1.3±0.2 versus 1.0±0.2 mm), and posterior wall thickness (1.1±0.3 versus 0.9±0.1 mm). Furthermore, compared with wild-type mice, ghrelin knockout mice showed suppression of the cholinergic anti-inflammatory pathway, as indicated by reduced parasympathetic nerve activity and higher plasma interleukin-1β and interleukin-6 levels. The administration of either nicotine or ghrelin activated the cholinergic anti-inflammatory pathway and attenuated cardiac hypertrophy in ghrelin knockout mice. In conclusion, our results show that endogenous ghrelin plays a crucial role in the progression of pressure overload-induced cardiac hypertrophy via a mechanism that involves the activation of the cholinergic anti-inflammatory pathway.

    Topics: Analysis of Variance; Animals; Atropine Derivatives; Cardiomegaly; Cholinergic Agents; Disease Models, Animal; Ghrelin; Mice; Mice, Knockout; Nicotine; Random Allocation; Reference Values; Signal Transduction; Ventricular Pressure

2015
Repeated amygdala-kindled seizures induce ictal rebound tachycardia in rats.
    Epilepsy & behavior : E&B, 2011, Volume: 22, Issue:3

    It is thought that cardiovascular changes may contribute to sudden death in patients with epilepsy. To examine cardiovascular alterations that occur during epileptogenesis, we measured the heart rate of rats submitted to the electrical amygdala kindling model. Heart rate was recorded before, during, and after the induced seizures. Resting heart rate was increased in stages 1, 3, and 5 as compared with the unstimulated control condition. In the initial one third of the seizures, we observed bradycardia, which increased in intensity with increasing stage and was blocked by injecting methyl atropine. During stage 5 seizures, a rebound tachycardia was observed that also increased in intensity with increasing number of seizures. This study demonstrated the influence of seizure frequency on cardiac autonomic modulation, providing a basis for discussion of potential mechanisms that cause patients with epilepsy to die suddenly.

    Topics: Amygdala; Analysis of Variance; Animals; Atropine Derivatives; Disease Models, Animal; Electric Stimulation; Electrocardiography; Electroencephalography; Heart Rate; Kindling, Neurologic; Male; Parasympatholytics; Rats; Rats, Wistar; Reaction Time; Seizures; Tachycardia

2011
Cardiovascular autonomic dysfunction in a novel rodent model of polycystic kidney disease.
    Autonomic neuroscience : basic & clinical, 2010, Jan-15, Volume: 152, Issue:1-2

    Autonomic dysfunction, hypertension and cardiovascular morbidity in end stage renal disease are critically linked, however there are limited models available to investigate this relationship and develop clinical interventions. This study aimed to define the relationship between hypertension and autonomic function in a new rodent model of polycystic kidney disease (PKD). Using measures of heart rate and systolic blood pressure variability (HRV, SBPV), and time domain analysis of cardiac and sympathetic baroreflex function, we compared the Lewis PKD model (LPK) to a Lewis control. Systolic BP and SBPV were significantly higher in LPK vs. Lewis (168+/-7 vs. 131+/-8mm Hg, P

    Topics: Animals; Antihypertensive Agents; Atenolol; Atropine Derivatives; Autonomic Nervous System; Baroreflex; Blood Pressure; Cardiovascular System; Disease Models, Animal; Electrophysiologic Techniques, Cardiac; Fourier Analysis; Heart Rate; Hypertension; Male; Nitroprusside; Parasympatholytics; Polycystic Kidney, Autosomal Recessive; Rats; Rats, Inbred Lew; Signal Processing, Computer-Assisted

2010
Physical exercise attenuates the cardiac autonomic deficit induced by nitric oxide synthesis blockade.
    Arquivos brasileiros de cardiologia, 2009, Volume: 92, Issue:1

    The nitric oxide (NO) synthesis blockade is characterized by an increase in the cardiac sympathetic activity and the physical training promotes the decrease in the sympathetic activity.. We investigated the effect of the NO synthesis blockade on the autonomic cardiovascular control in rats submitted to aerobic exercises during a 10-week period.. Male Wistar rats were divided in four groups: control rats, treated with chow food and water ad libitum for 10 weeks (CR); control rats, treated with N G-nitro-L-arginine methyl ester (L-NAME) during the last week (CRL); rats trained during 10 weeks on an electrical treadmill (TR); rats trained for 10 weeks and treated with L-NAME during the last week (TRL). The autonomic cardiovascular control was investigated in all groups with the use of a double blockade with methylatropine and propranolol and analysis of variability.. The CRL and TRL groups presented hypertension. The CRL group presented tachycardia and predominance of the sympathetic tonus in heat rate (HR) measurement after the pharmacological autonomic blockade. The TR group presented bradycardia and lower intrinsic HR when compared to the others. The evaluation of the HR variability showed lower absolute and normalized values in the low frequency (LF) band in the CRL group. On the other hand, the TRL presented an increase in the LF band in absolute values. The analysis of variability of the systemic arterial pressure (SAP) showed that the CRL and TRL groups presented higher values in the LF band.. The previous physical exercise prevented the deficit in the autonomic cardiac control induced by the treatment with L-NAME, but did not prevent the increase in the SAP variability.

    Topics: Adrenergic beta-Antagonists; Analysis of Variance; Animals; Atropine Derivatives; Autonomic Nervous System; Blood Pressure; Disease Models, Animal; Enzyme Inhibitors; Heart Rate; Hypertension; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Physical Conditioning, Animal; Propranolol; Rats; Rats, Wistar

2009
Upregulated TWIK-related acid-sensitive K+ channel-2 in neurons and perivascular astrocytes in the hippocampus of experimental temporal lobe epilepsy.
    Epilepsia, 2009, Volume: 50, Issue:4

    To identify the modulation of Tandem of P-domains in a weak inwardly rectifying K(+) channel (TWIK)-related acid-sensitive K(+) (TASK)-2 channel expressions in epilepsy, we conducted a comparative analysis of TASK-2 channel immunoreactivity in the hippocampus of a pilocarpine-induced rat epilepsy model.. We performed and immunohistochemical study for TASK-2 and double immunofluorescent staining for TASK-2 and glial fibrillary acidic protein (GFAP) in the rat hippocampus of pilocarpine-induced epilepsy models.. In control animals, TASK-2 immunoreactivity was strongly detected in CA1-3 pyramidal layers and dentate granule cell layer. After status epilepticus (SE), TASK-2 immunoreactivity was increased in dentate granule cell layer and CA3 pyramidal cell layer, whereas its immunoreactivity was reduced in CA1 pyramidal cell layer. In addition, TASK-2 immunoreactivity is gradually increased in perivascular regions following SE. Double immunofluorescent study revealed that the enhancement of TASK-2 immunoreactivity in perivascular regions is caused by increase in the number of TASK-2 immunoreactive endfeet of perivascular astrocytes.. Our findings suggest that elevated TASK-2 immunoreactivity in neurons may contribute to rapid adaptive responses (presumably for extracellular alkalinization), which result in hyperpolarization and regulate seizure activity. In contrast, upregulated TASK-2 immunoreactivity in perivascular regions may be involved in abnormalities of blood flow regulation or brain-blood barrier impairment. These changes may contribute to acquisition of the properties of the epileptic hippocampus.

    Topics: Animals; Astrocytes; Atropine Derivatives; Cerebral Ventricles; Disease Models, Animal; Epilepsy, Temporal Lobe; Glial Fibrillary Acidic Protein; Hippocampus; Image Processing, Computer-Assisted; Indoles; Male; Neurons; Pilocarpine; Potassium Channels, Tandem Pore Domain; Rats; Rats, Sprague-Dawley; Up-Regulation

2009
Dysfunction of the dentate basket cell circuit in a rat model of temporal lobe epilepsy.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2009, Jun-17, Volume: 29, Issue:24

    Temporal lobe epilepsy is common and difficult to treat. Reduced inhibition of dentate granule cells may contribute. Basket cells are important inhibitors of granule cells. Excitatory synaptic input to basket cells and unitary IPSCs (uIPSCs) from basket cells to granule cells were evaluated in hippocampal slices from a rat model of temporal lobe epilepsy. Basket cells were identified by electrophysiological and morphological criteria. Excitatory synaptic drive to basket cells, measured by mean charge transfer and frequency of miniature EPSCs, was significantly reduced after pilocarpine-induced status epilepticus and remained low in epileptic rats, despite mossy fiber sprouting. Paired recordings revealed higher failure rates and a trend toward lower amplitude uIPSCs at basket cell-to-granule cell synapses in epileptic rats. Higher failure rates were not attributable to excessive presynaptic inhibition of GABA release by activation of muscarinic acetylcholine or GABA(B) receptors. High-frequency trains of action potentials in basket cells generated uIPSCs in granule cells to evaluate readily releasable pool (RRP) size and resupply rate of recycling vesicles. Recycling rate was similar in control and epileptic rats. However, quantal size at basket cell-to-granule cell synapses was larger and RRP size smaller in epileptic rats. Therefore, in epileptic animals, basket cells receive less excitatory synaptic drive, their pools of readily releasable vesicles are smaller, and transmission failure at basket cell-to-granule cell synapses is increased. These findings suggest dysfunction of the dentate basket cell circuit could contribute to hyperexcitability and seizures.

    Topics: Analysis of Variance; Animals; Atropine Derivatives; Dentate Gyrus; Disease Models, Animal; Electric Stimulation; Epilepsy, Temporal Lobe; GABA Antagonists; In Vitro Techniques; Lysine; Male; Muscarinic Agonists; Muscarinic Antagonists; Nerve Net; Neurons; Patch-Clamp Techniques; Phosphinic Acids; Pilocarpine; Propanolamines; Rats; Rats, Sprague-Dawley; Synaptic Potentials; Synaptophysin; Time Factors

2009
Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2009, Jun-24, Volume: 29, Issue:25

    Dentate granule cell axon (mossy fiber) sprouting is a common abnormality in patients with temporal lobe epilepsy. Mossy fiber sprouting creates an aberrant positive-feedback network among granule cells that does not normally exist. Its role in epileptogenesis is unclear and controversial. If it were possible to block mossy fiber sprouting from developing after epileptogenic treatments, its potential role in the pathogenesis of epilepsy could be tested. Previous attempts to block mossy fiber sprouting have been unsuccessful. The present study targeted the mammalian target of rapamycin (mTOR) signaling pathway, which regulates cell growth and is blocked by rapamycin. Rapamycin was focally, continuously, and unilaterally infused into the dorsal hippocampus for prolonged periods beginning within hours after rats sustained pilocarpine-induced status epilepticus. Infusion for 1 month reduced aberrant Timm staining (a marker of mossy fibers) in the granule cell layer and molecular layer. Infusion for 2 months inhibited mossy fiber sprouting more. However, after rapamycin infusion ceased, aberrant Timm staining developed and approached untreated levels. When onset of infusion began after mossy fiber sprouting had developed for 2 months, rapamycin did not reverse aberrant Timm staining. These findings suggest that inhibition of the mTOR signaling pathway suppressed development of mossy fiber sprouting. However, suppression required continual treatment, and rapamycin treatment did not reverse already established axon reorganization.

    Topics: Animals; Anticonvulsants; Atropine Derivatives; Axons; Dentate Gyrus; Disease Models, Animal; Epilepsy, Temporal Lobe; Immunohistochemistry; Infusions, Parenteral; Injections, Intraperitoneal; Male; Mossy Fibers, Hippocampal; Muscarinic Agonists; Neural Inhibition; Neurons; Parasympatholytics; Pilocarpine; Protein Kinases; Rats; Rats, Sprague-Dawley; Signal Transduction; Sirolimus; Staining and Labeling; Status Epilepticus; Time Factors; TOR Serine-Threonine Kinases

2009
Peripheral administration of CDP-choline, phosphocholine or choline increases plasma adrenaline and noradrenaline concentrations.
    Autonomic & autacoid pharmacology, 2008, Volume: 28, Issue:1

    1 Intraperitoneal (i.p.) injection of 200-600 mumol/kg of cytidine-5'-diphosphocholine (CDP-choline) increased plasma adrenaline and noradrenaline concentrations dose- and time-dependently. 2 CDP-choline treatment caused several-fold increases in plasma concentrations of CDP-choline and its metabolites phosphocholine, choline, cytidine monophosphate (CMP) and cytidine. 3 Equivalent doses (200-600 mumol/kg; i.p.) of phosphocholine or choline, but not CMP or cytidine, increased plasma adrenaline and noradrenaline dose-dependently. 4 CDP-choline, phosphocholine and choline (600 mumol/kg; i.p.) augmented the increases in plasma adrenaline and noradrenaline in response to graded haemorrhage. 5 The increases in plasma adrenaline and noradrenaline induced by i.p. 600 mumol/kg of CDP-choline, phosphocholine or choline were abolished by pre-treatment with hexamethonium (15 mg/kg; i.p.), but not atropine (2 mg/kg; i.p.). 6 At 320-32 000 mum concentrations, choline, but not CDP-choline or phosphocholine, evoked catecholamine secretion from perfused adrenal gland. Choline (3200 mum)-induced catecholamine secretion was attenuated by the presence of 1 mum of hexamethonium or mecamylamine, but not atropine, in the perfusion medium. 7 Intracerebroventricular (i.c.v.) injection of choline (0.5-1.5 mumol) also increased plasma adrenaline and noradrenaline dose- and time-dependently. Pre-treatment with mecamylamine (50 mug; i.c.v.) or hexamethonium (15 mg/kg; i.p.), but not atropine (10 mug; i.c.v.), prevented i.c.v. choline (1.5 mumol)-induced elevations in plasma adrenaline and noradrenaline. 8 It is concluded that i.p. administration of CDP-choline or its cholinergic metabolites phosphocholine and choline increases plasma adrenaline and noradrenaline concentrations by enhancing nicotinic cholinergic neurotransmission in the sympatho-adrenal system. Central choline also activates the sympatho-adrenal system by increasing central nicotinic cholinergic neurotransmission.

    Topics: Adrenal Glands; Animals; Atropine Derivatives; Autonomic Nervous System; Central Nervous System; Choline; Cytidine; Cytidine Diphosphate Choline; Cytidine Monophosphate; Disease Models, Animal; Dose-Response Relationship, Drug; Epinephrine; Female; Hemorrhage; Hexamethonium; Injections, Intraperitoneal; Injections, Intraventricular; Mecamylamine; Nicotinic Antagonists; Norepinephrine; Phosphorylcholine; Rats; Rats, Wistar; Time Factors

2008
Hyperinsulinemia instead of insulin resistance induces baroreflex dysfunction in chronic insulin-infused rats.
    American journal of hypertension, 2007, Volume: 20, Issue:4

    The present study was undertaken to compare the effects of chronic hyperinsulinemia with or without insulin resistance on the autonomic control of heart rate (HR) in rats.. Male Sprague-Dawley rats were implanted subcutaneously with insulin (3 mU/kg x min) or vehicle-filled osmotic minipumps for 8 weeks. Insulin-infused rats were further divided into insulin resistant (IR) and insulin sensitive (IS) groups according to the results of the homeostasis model assessment method and euglycemic hyperinsulinemic clamp study. Autonomic function in HR control was indicated by arterial baroreflex sensitivity (BRS) after a bolus injection of phenylephrine or sodium nitroprusside.. Compared with those in control group, plasma insulin levels were elevated about threefold and 1.5-fold in the IR and IS groups at the end of week 8, respectively. Blood glucose level remained basal in the IR group, but was significantly lower in the IS group. The elevated mean arterial pressure (MAP) observed in IR was not exhibited in IS. The HR and BRS in reflex tachycardia were significantly increased in the IR and IS groups, but the BRS in reflex bradycardia was not different among all rats. Propranolol eliminated the tachycardia and enhanced BRS responses in both groups. Methylatropine further accelerated tachycardia and diminished the enhanced BRS in the IR group. However, in IS, the enhanced BRS remained after methylatropine was given. The intrinsic HR was similar among all groups. The baseline MAP, HR, and BRS in reflex tachycardia were significantly correlated to plasma insulin levels but not to the Si value, an index of insulin sensitivity.. The present results demonstrate that hyperinsulinemia but not insulin resistance is a dominant contributing factor to the development of arterial baroreflex abnormalities in this chronic hyperinsulinemic model, which may simultaneously enhance sympathetic nerve activity and possibly vagal withdrawal if insulin resistance coexisted.

    Topics: Animals; Atropine Derivatives; Autonomic Nervous System; Baroreflex; Blood Glucose; Disease Models, Animal; Heart Rate; Hyperinsulinism; Insulin; Insulin Resistance; Male; Parasympatholytics; Rats; Rats, Sprague-Dawley; Tachycardia; Vagus Nerve

2007
Overlapping microarray profiles of dentate gyrus gene expression during development- and epilepsy-associated neurogenesis and axon outgrowth.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003, Mar-15, Volume: 23, Issue:6

    Neurogenesis and axon outgrowth are features shared by normal nervous system development and certain forms of epileptogenesis. This observation has led to the hypothesis that some aspects of normal development and epileptogenesis have common molecular mechanisms. To test this hypothesis, we have used DNA microarray analysis to characterize gene expression in the dentate gyrus and identify genes exhibiting similar patterns of regulation during development and epileptogenesis. Of more than 8000 sequences surveyed, over 600 were regulated during development or epileptogenesis, and 37 of these were either upregulated or downregulated during both processes. In situ hybridization analysis of a subset of these "commonality genes" confirmed the patterns of regulation predicted by the microarray data in most cases and demonstrated various spatial and temporal patterns of commonality gene expression. Of the 25 named commonality genes in which some functional characteristics are known, 11 have been implicated in cell morphology and axon outgrowth or cellular proliferation and fate determination. This enrichment for candidate plasticity-related genes supports the concept that developmental mechanisms contribute to network alterations associated with epileptogenesis and offers a useful strategy for identifying molecules that may play a role in both of these processes.

    Topics: Analysis of Variance; Animals; Antigens, CD; Atropine Derivatives; Axons; Calcium-Binding Proteins; CD24 Antigen; Dentate Gyrus; Disease Models, Animal; Epilepsy; Expressed Sequence Tags; Gene Expression Profiling; Gene Expression Regulation, Developmental; Hippocalcin; Male; Membrane Glycoproteins; Multigene Family; Nerve Tissue Proteins; Neurons; Oligonucleotide Array Sequence Analysis; Pilocarpine; Rats; Rats, Sprague-Dawley; RNA, Messenger

2003
Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003, Mar-15, Volume: 23, Issue:6

    Patients and models of temporal lobe epilepsy have fewer inhibitory interneurons in the dentate gyrus than controls, but it is unclear whether granule cell inhibition is reduced. We report the loss of GABAergic inhibition of granule cells in the temporal dentate gyrus of pilocarpine-induced epileptic rats. In situ hybridization for GAD65 mRNA and immunocytochemistry for parvalbumin and somatostatin confirmed the loss of inhibitory interneurons. In epileptic rats, granule cells had prolonged EPSPs, and they discharged more action potentials than controls. Although the conductances of evoked IPSPs recorded in normal ACSF were not significantly reduced and paired-pulse responses showed enhanced inhibition of granule cells from epileptic rats, more direct measures of granule cell inhibition revealed significant deficiencies. In granule cells from epileptic rats, evoked monosynaptic IPSP conductances were <40% of controls, and the frequency of GABA(A) receptor-mediated spontaneous and miniature IPSCs (mIPSCs) was <50% of controls. Within 3-7 d after pilocarpine-induced status epilepticus, miniature IPSC frequency had decreased, and it remained low, without functional evidence of compensatory synaptogenesis by GABAergic axons in chronically epileptic rats. Both parvalbumin- and somatostatin-immunoreactive interneuron numbers and the frequency of both fast- and slow-rising GABA(A) receptor-mediated mIPSCs were reduced, suggesting that loss of inhibitory synaptic input to granule cells occurred at both proximal/somatic and distal/dendritic sites. Reduced granule cell inhibition in the temporal dentate gyrus preceded the onset of spontaneous recurrent seizures by days to weeks, so it may contribute, but is insufficient, to cause epilepsy.

    Topics: Action Potentials; Animals; Atropine Derivatives; Cell Count; Dentate Gyrus; Disease Models, Animal; Electric Stimulation; Epilepsy, Temporal Lobe; Evoked Potentials; In Vitro Techniques; Interneurons; Male; Membrane Potentials; Neural Inhibition; Neurons; Patch-Clamp Techniques; Pilocarpine; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Sensory Thresholds; Status Epilepticus

2003
The peripheral sympathetic nervous system is the major target of cannabinoids in eliciting cardiovascular depression.
    Naunyn-Schmiedeberg's archives of pharmacology, 2003, Volume: 367, Issue:5

    Our objective was to identify the sites of interaction of cannabinoids with cardiovascular sympathetic regulation in the rat. Effects on sympathetic tone were first determined in anaesthetised animals following i.v. administration of the drugs. Central effects were evaluated in anaesthetised rats receiving microinjections of cannabinoids into brain stem nuclei. Peripheral effects were identified in pithed rats with electrically stimulated sympathetic outflow. In anaesthetised and artificially ventilated rats, i.v. injection of the cannabinoid agonists WIN55212-2 and CP55940 decreased mean arterial pressure, heart rate and the plasma noradrenaline concentration. These effects were antagonized by the CB(1) cannabinoid receptor antagonist SR141716A. The bradycardia was abolished by the muscarinic acetylcholine receptor antagonist methylatropine. The decreases in mean arterial pressure and heart rate caused by cannabinoids in ventilated rats were much less pronounced than in spontaneously breathing rats. Microinjection of WIN55212-2 into the nucleus tractus solitarii had no effect. Microinjected into the rostral ventrolateral medulla oblongata, WIN55212-2 lowered mean arterial pressure slightly without changing other parameters. In pithed rats, WIN55212-2 inhibited the increases in mean arterial pressure, heart rate and the plasma noradrenaline concentration evoked by electrical stimulation of the sympathetic outflow. Our results show that activation of CB(1) cannabinoid receptors induces sympathoinhibition and enhancement of cardiac vagal tone, leading to hypotension and bradycardia. Presynaptic inhibition of noradrenaline release from terminals of postganglionic sympathetic neurons is the major component of the sympathoinhibition, but an effect in the rostral ventrolateral medulla oblongata may also contribute. The cannabinoid-evoked cardiovascular depression depends strongly on the respiratory state of the animals.

    Topics: Animals; Atropine Derivatives; Benzoxazines; Bradycardia; Cannabinoids; Cardiovascular System; Cyclohexanols; Disease Models, Animal; Dose-Response Relationship, Drug; Hypotension; Male; Medulla Oblongata; Microinjections; Morpholines; Naphthalenes; Norepinephrine; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant; Sympathetic Fibers, Postganglionic; Sympathetic Nervous System

2003
Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2002, Aug-01, Volume: 22, Issue:15

    The most common type of epilepsy in adults is temporal lobe epilepsy. After epileptogenic injuries, dentate granule cell axons (mossy fibers) sprout and form new synaptic connections. Whether this synaptic reorganization strengthens recurrent inhibitory circuits or forms a novel recurrent excitatory circuit is unresolved. We labeled individual granule cells in vivo, reconstructed sprouted mossy fibers at the EM level, and identified postsynaptic targets with GABA immunocytochemistry in the pilocarpine model of temporal lobe epilepsy. Granule cells projected an average of 1.0 and 1.1 mm of axon into the granule cell and molecular layers, respectively. Axons formed an average of one synapse every 7 microm in the granule cell layer and every 3 microm in the molecular layer. Most synapses were with spines (76 and 98% in the granule cell and molecular layers, respectively). Almost all of the synapses were with GABA-negative structures (93 and 96% in the granule cell and molecular layers, respectively). By integrating light microscopic and EM data, we estimate that sprouted mossy fibers form an average of over 500 new synapses per granule cell, but <25 of the new synapses are with GABAergic interneurons. These findings suggest that almost all of the synapses formed by mossy fibers in the granule cell and molecular layers are with other granule cells. Therefore, after epileptogenic treatments that kill hilar mossy cells, mossy fiber sprouting does not simply replace one recurrent excitatory circuit with another. Rather, it replaces a distally distributed and disynaptic excitatory feedback circuit with one that is local and monosynaptic.

    Topics: Animals; Atropine Derivatives; Axons; Dendrites; Disease Models, Animal; Epilepsy, Temporal Lobe; Feedback; gamma-Aminobutyric Acid; Interneurons; Lysine; Male; Mossy Fibers, Hippocampal; Pilocarpine; Rats; Rats, Sprague-Dawley; Synapses

2002
Muscarinic depression of synaptic transmission in the epileptogenic GABA withdrawal syndrome focus.
    Journal of neurophysiology, 2001, Volume: 85, Issue:5

    The GABA withdrawal syndrome (GWS) is a model of local status epilepticus consecutive to the interruption of a prolonged GABA infusion into the rat somatomotor cortex. Bursting patterns in slices from GWS rats include intrinsic bursts of action potentials (APs) induced by intracellular depolarizing current injection and/or paroxysmal depolarization shifts (PDSs) induced by white matter stimulation. Possible changes in the effects of cholinergic drugs after in vivo induction of GWS were investigated on bursting cells (n = 30) intracellularly recorded in neocortical slices. In GWS slices, acetylcholine (Ach, 200-1000 microM) or carbachol (Cch, 50 microM) applications increased the number of bursts induced by depolarizing current injection while synaptically induced PDSs were significantly diminished (by 50-60%) or even blocked independently of the cholinergic-induced depolarization. The intrinsic burst facilitation and PDS depression provoked by Ach or Cch were mimicked by methyl-acetylcholine (mAch, 100-400 microM, n = 11), were reversed by atropine application (1-50 microM, n = 3), and were not mimicked by nicotine (50-100 microM, n = 4), indicating the involvement of muscarinic receptors. In contrast, in nonbursting cells from the same epileptic area (n = 42) or from equivalent area in control rats (n = 24), a nonsignificant muscarinic depression of EPSPs was induced by Cch and Ach. The mAch depression of excitatory postsynaptic potential (EPSPs) was significantly lower than that seen for PDSs in GWS rats. None of the cholinergic agonists caused bursting appearance in these cells. Therefore the present study demonstrates a unique implication of muscarinic receptors in exerting opposite effects on intrinsic membrane properties and on synaptic transmission in epileptiform GWS. Muscarinic receptor mechanisms may therefore have a protective role against the development and spread of epileptiform activity from the otherwise-activated epileptic focus.

    Topics: Action Potentials; Animals; Atropine Derivatives; Disease Models, Animal; Excitatory Postsynaptic Potentials; gamma-Aminobutyric Acid; Male; Motor Cortex; Muscarinic Agonists; Muscarinic Antagonists; Nicotine; Patch-Clamp Techniques; Pyramidal Cells; Rats; Rats, Wistar; Reaction Time; Receptors, Muscarinic; Status Epilepticus; Substance Withdrawal Syndrome; Synaptic Transmission

2001
Impaired neural regulation of insulin secretion related to the leptin receptor gene mutation in Wistar fatty rats.
    Physiology & behavior, 2000, Sep-15, Volume: 70, Issue:5

    The Wistar fatty (WF) rat is a model of obese Type 2 diabetes mellitus (DM). These rats were bred by crossing Zucker fatty (ZF) and Wistar-Kyoto (WKY) rats. A homo-allelic leptin receptor gene mutation has been reported in ZF rats. We report here how these genetic factors contribute to plasma insulin regulation. The fasting plasma insulin levels were higher in WKY and Wistar lean (WL) rats than in Zucker lean (ZL) rats (p<0.05). The levels in WF and ZF rats were higher than in their respective lean littermates, WL and ZL rats (p<0.05). After intragastric glucose load, the plasma insulin increase was reduced upon pretreatment by intracerebroventricular (i. c.v.) methylatropine (an antagonist of the cholinergic receptor) injection in WL rats (p<0.05) but not in WF rats. Plasma glucagon-like peptide-1 (GLP-1) response to intragastric glucose load was not affected by methylatropine. After selective hepatic-vagotomy, plasma insulin levels increased in wild-type ZL rats (p<0.05). This increase was not observed in heterozygote ZL rats. Surprisingly, this response of plasma insulin was not shown in wild-type WL and WKY rats. ZF and WF rats did show a prominent decrease in insulin response (p<0.05). These results indicate that the genetic factor in ZF rats is associated with impaired vagal nerve-mediated control of insulin secretion. The genetic factor in WKY rats may diminish sensitivity to the vagal information of insulin release and contribute to insulin resistance. Therefore, we conclude that the presence of both genetic factors in a homo-allelic state is important to the development of DM in WF rats.

    Topics: Animals; Atropine Derivatives; Blood Glucose; Carrier Proteins; Crosses, Genetic; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Glucose Tolerance Test; Injections, Intraventricular; Insulin; Insulin Resistance; Insulin Secretion; Mutation; Obesity; Peptide Fragments; Protein Precursors; Rats; Rats, Inbred WKY; Rats, Zucker; Receptors, Cell Surface; Receptors, Leptin; Vagotomy; Vagus Nerve

2000
Localization of the reflex pathway responsible for the vasodepressor reaction induced by inferior vena caval occlusion and isoproterenol.
    Canadian journal of physiology and pharmacology, 1992, Volume: 70, Issue:6

    Vasodepressor reactions were induced in 27 rats by a combination of inferior vena caval occlusion and an infusion of isoproterenol. A vasodepressor reaction was defined as paradoxical heart rate slowing during inferior vena caval occlusion. The R-R intervals were measured at 5-s intervals before, during, and after 60 s of inferior vena caval occlusion. The purpose of this study was to examine the role of the right and left vagus nerve and the right and left stellate ganglia in this reflex. Under control conditions inferior vena caval occlusion accelerated the rate (R-R, -15.9 +/- 0.9 ms). During an infusion of isoproterenol (0.5-1.0 micrograms.min-1), inferior vena caval occlusion produced paradoxical rate slowing, i.e., a vasodepressor reaction (R-R, +75.0 +/- 2.2 ms). The vasodepressor reaction was examined during inferior vena caval occlusion and isoproterenol under the following additional states: atropine methyl bromide or right vagotomy did not alter the reaction; left vagotomy eliminated the reaction; and right or left stellectomy greatly reduced the vasodepressor reaction. We conclude the following: (1) left vagal afferents mediate the vasodepressor reaction; (2) cardiac sympathetic fibers participate in the vasodepressor reaction by withdrawing efferent tone through the right stellate ganglion, and by generating the afferent signal, which triggers the vasodepressor reaction through the left stellate ganglion.

    Topics: Animals; Atropine Derivatives; Bradycardia; Disease Models, Animal; Heart; Heart Ventricles; Hypotension; Isoproterenol; Male; Muscle Contraction; Muscle, Smooth, Vascular; Myocardial Contraction; Neurons, Afferent; Parasympatholytics; Rats; Rats, Wistar; Reflex; Stellate Ganglion; Syncope; Thrombophlebitis; Vagotomy; Vagus Nerve; Vena Cava, Inferior

1992
Participation of the parasympathetic nervous system in the development of activity-stress ulcers.
    The Japanese journal of surgery, 1991, Volume: 21, Issue:1

    The present study investigates the effects of truncal vagotomy and drug treatment, comprising atropine methylbromide and chlorisondamine, on the development of activity-stress ulcers in rats. To induce gastric lesions, female rats were housed individually in activity-wheel cages and subjected to a food-restricted schedule of only 1 hr food availability per day. Bilateral truncal vagotomy significantly prevented gastric ulceration, while those rats with vagotomy showed more running activity than sham-operated rats. Daily treatment with either methylatropine (3 and 6 mg/kg, s.c.) or chlorisondamine (2 and 4 mg/kg, i.p.) also significantly decreased the severity of lesions without a significant reduction in running activity. This evidence suggests that the development of activity-stress ulcers is mainly due to the hyperactivity of the peripheral parasympathetic nervous system.

    Topics: Animals; Atropine Derivatives; Chlorisondamine; Disease Models, Animal; Female; Motor Activity; Parasympathetic Nervous System; Parasympatholytics; Rats; Stomach Ulcer; Vagotomy, Truncal

1991
Early development of muscarinic supersensitivity in a genetic animal model of depression.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 1991, Volume: 4, Issue:3

    Adult Flinders-Sensitive Line (FSL) rats are significantly more sensitive to the behavioral and physiologic effects of muscarinic agonists than are control, Flinders-Resistant Line (FRL) rats; therefore, they resemble humans with depressive disorders. The present study examined the sensitivity of prepubertal and pubertal FSL and FRL rats to the hypothermic and locomotor inhibitory effects of the muscarinic agonist, oxotremorine, and compared these findings to the regional development of muscarinic receptor binding in similarly aged rats. The FSL rats were significantly more sensitive (-1.85 degrees +/- 0.2 degrees C) than the FRL rats (-0.65 degrees +/- 0.15 degrees C) to the hypothermic effect of 0.25 mumol/kg of oxotremorine at the earliest age tested (18 days postpartum) and became progressively more sensitive throughout the period of testing (FSL -2.8 degrees +/- 0.24 degrees C versus FRL -0.5 degrees +/- 0.16 degrees C at 61 days postpartum, data represent the mean +/- SEM of pooled male and female). Significant increases in muscarinic receptor number in FSL rat brain were observed only in older (61 days postpartum) rats. These results are consistent with the suggestion that the FSL rat is a genetic animal model of depression, but also indicate that the differences in muscarinic sensitivity cannot be accounted for exclusively by differences in the number, per se, of muscarinic receptors.

    Topics: Aging; Animals; Atropine Derivatives; Body Temperature; Body Weight; Brain; Depression; Disease Models, Animal; Female; Locomotion; Male; Oxotremorine; Quinuclidinyl Benzilate; Radioligand Assay; Rats; Receptors, Muscarinic

1991