methyl-3-methoxy-4-hydroxystyryl-ketone and Pheochromocytoma

methyl-3-methoxy-4-hydroxystyryl-ketone has been researched along with Pheochromocytoma* in 1 studies

Other Studies

1 other study(ies) available for methyl-3-methoxy-4-hydroxystyryl-ketone and Pheochromocytoma

ArticleYear
Small molecules interacting with α-synuclein: antiaggregating and cytoprotective properties.
    Amino acids, 2013, Volume: 45, Issue:2

    Curcumin, a dietary polyphenol, has shown a potential to act on the symptoms of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, as a consequence of its antioxidant, anti-inflammatory and anti-protein aggregation properties. Unfortunately, curcumin undergoes rapid degradation at physiological pH into ferulic acid, vanillin and dehydrozingerone, making it an unlikely drug candidate. Here, we evaluated the ability of some curcumin by-products: dehydrozingerone (1), its O-methyl derivative (2), zingerone (3), and their biphenyl analogues (4-6) to interact with α-synuclein (AS), using CD and fluorescence spectroscopy. In addition, the antioxidant properties and the cytoprotective effects in rat pheochromocytoma (PC12) cells prior to intoxication with H2O2, MPP+ and MnCl2 were examined while the Congo red assay was used to evaluate the ability of these compounds to prevent aggregation of AS. We found that the biphenyl zingerone analogue (6) interacts with high affinity with AS and also displays the best antioxidant properties while the biphenyl analogues of dehydrozingerone (4) and of O-methyl-dehydrozingerone (5) are able to partially inhibit the aggregation process of AS, suggesting the potential role of a hydroxylated biphenyl scaffold in the design of AS aggregation inhibitors.

    Topics: Adrenal Gland Neoplasms; alpha-Synuclein; Alzheimer Disease; Animals; Antioxidants; Cell Line, Tumor; Curcumin; Cytoprotection; Guaiacol; Parkinson Disease; Pheochromocytoma; Rats; Styrenes

2013