methocinnamox has been researched along with Opiate-Overdose* in 2 studies
2 other study(ies) available for methocinnamox and Opiate-Overdose
Article | Year |
---|---|
Daily methocinnamox treatment dose-dependently attenuates fentanyl self-administration in rhesus monkeys.
Opioid use disorder and opioid overdose continue to be significant public health challenges despite the availability of effective treatments. Methocinnamox (MCAM) is a novel, long-acting opioid receptor antagonist that might be an effective treatment for opioid use disorder (i.e., preventing relapse and overdose). In nonhuman primates, MCAM selectively blocks the positive reinforcing effects of mu opioid receptor agonists, including heroin, fentanyl, and its ultra-potent analogs (e.g., carfentanil) with a single administration of MCAM being effective for up to two weeks. Because treatment of opioid use disorder would involve repeated administration of a medication, MCAM was studied in rhesus monkeys (3 males and 2 females) responding under a fixed-ratio self-administration procedure for a range of doses of fentanyl (0.000032-0.1 mg/kg/infusion). The fentanyl self-administration dose-effect curve was determined before and during treatment with progressively increasing daily doses of MCAM (0.001-0.1 mg/kg) given subcutaneously 1 h before the session. MCAM dose-dependently shifted the fentanyl dose-effect curve rightward and then, at larger doses, downward. The largest treatment dose of MCAM (0.1 mg/kg/day) shifted the curve more than 120-fold rightward with monkeys receiving doses much larger than the likely lethal dose of fentanyl with no adverse effect or observable change in behavior. This study demonstrates that MCAM reliably and dose-dependently decreases fentanyl self-administration and prevents opioid overdose, with no evidence of adverse effects over a broad dose range, further supporting the potential therapeutic utility of this novel antagonist. Topics: Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Female; Fentanyl; Macaca mulatta; Male; Opiate Overdose; Receptors, Opioid, mu | 2024 |
Behavioral pharmacology of methocinnamox: A potential new treatment for opioid overdose and opioid use disorder.
Opioid overdose and opioid use disorder continue to be significant public health challenges despite the availability of effective medications and significant efforts at all levels of society. The emergence of highly potent and efficacious opioids such as fentanyl and its derivatives over the last decade has only exacerbated what was already a substantial problem. Behavioral pharmacology research has proven invaluable for understanding the effects of drugs as well as developing and evaluating pharmacotherapies for disorders involving the central nervous system, including substance abuse disorders. This paper describes a program of research characterizing a potent, selective, and long-lasting mu opioid receptor antagonist, methocinnamox, and evaluating its potential for treating opioid overdose and opioid use disorder. Studies in rodents and nonhuman primates demonstrate that methocinnamox prevents and reverses opioid-induced ventilatory depression and selectively blocks opioid self-administration. This work, taken together with rigorous in vitro and ex vivo studies investigating methocinnamox neuropharmacology, lays a solid foundation for the therapeutic utility of this potentially life-saving medication. Moreover, these studies demonstrate how rigorous behavioral pharmacological studies can be integrated in a broader drug discovery and development research program. Topics: Analgesics, Opioid; Animals; Morphine Derivatives; Opiate Overdose; Opioid-Related Disorders; Receptors, Opioid, mu | 2023 |