methimazole and Reperfusion-Injury

methimazole has been researched along with Reperfusion-Injury* in 6 studies

Other Studies

6 other study(ies) available for methimazole and Reperfusion-Injury

ArticleYear
Hypothyroid state does not protect but delays neuronal death in the hippocampal CA1 region following transient cerebral ischemia: focus on oxidative stress and gliosis.
    Journal of neuroscience research, 2010, Volume: 88, Issue:12

    We investigated protective effects of hypothyroidism on delayed neuronal death, gliosis, lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) in the gerbil hippocampal CA1 region (CA1) after 5 min of transient cerebral ischemia. The hypothyroidism was induced by 0.025% methimazole treatment. Free triiodothyronine and thyroxine levels were markedly decreased in the hypothyroid group. Four days after ischemia/reperfusion, only a few NeuN-immunoreactive (+) neurons were detected in the CA1 of euthyroid-ischemia (eu-ischemia) group; however, at this time point, the number of NeuN(+) neurons was significantly higher in the hypothyroid-ischemia (hypo-ischemia) group than in the eu-ischemia group. At 5 days postischemia, NeuN(+) neurons were significantly decreased in the hypo-ischemia group: The number of NeuN(+) neurons in this group was similar to that in the eu-ischemia group. Activations of GFAP(+) astrocytes and Iba-1(+) microglia in the CA1 were higher in the eu-ischemia group 3 and 4 days after ischemia/reperfusion. At 5 days postischemia, the activations of both the glial cells in the CA1 were similar between the two groups. 4-Hydroxy-2-nonenal (HNE), a marker for lipid peroxidation, immunoreactivity in the eu-ischemia group was higher than in the hypo-ischemia group; at 5 days postischemia, the immunoreactivity was similar between the two groups. In contrast, SOD1 level was lower in the CA1 of the eu-ischemia group. These results suggest that hypothyroid state does not protect against delayed neuronal death but only delays the neuronal death in the hippocampal CA1 region after transient cerebral ischemia by reducing lipid peroxidation and increasing SOD1.

    Topics: Animals; Antithyroid Agents; Brain Ischemia; CA1 Region, Hippocampal; Cell Death; Cytoprotection; Gerbillinae; Gliosis; Hypothyroidism; Lipid Peroxidation; Male; Methimazole; Neurons; Oxidative Stress; Reperfusion Injury; Superoxide Dismutase; Superoxide Dismutase-1

2010
Clinical use of methimazole to treat ischaemia/reperfusion injury is inadvisable.
    Journal of plastic, reconstructive & aesthetic surgery : JPRAS, 2009, Volume: 62, Issue:3

    Topics: Antithyroid Agents; Contraindications; Humans; Methimazole; Neutrophils; Reperfusion Injury

2009
A novel use of methimazole to ameliorate reperfusion injury.
    Journal of plastic, reconstructive & aesthetic surgery : JPRAS, 2008, Volume: 61, Issue:10

    Topics: Antithyroid Agents; Humans; Intercellular Adhesion Molecule-1; Lymphocyte Function-Associated Antigen-1; Methimazole; Neutrophils; Reperfusion Injury; Surgical Flaps

2008
Methimazole protects lungs during hepatic ischemia-reperfusion injury in rats: an effect not induced by hypothyroidism.
    Journal of gastroenterology and hepatology, 2007, Volume: 22, Issue:5

    Hepatic ischemia-reperfusion injury may lead to remote organ failure with mortal respiratory dysfunction. The aim of the present study was to analyze the possible protective effects of methimazole on lungs after hepatic ischemia-reperfusion injury.. Forty male Wistar albino rats were randomized into five groups: a control group, in which bilateral pulmonary lobectomy was done; a hepatic ischemia-reperfusion group, in which bilateral pulmonary lobectomy was done after hepatic ischemia-reperfusion; a thyroidectomy-ischemia-reperfusion group (total thyroidectomy followed by, 7 days later, bilateral pulmonary lobectomy after hepatic ischemia-reperfusion); a methimazole-ischemia-reperfusion group (following methimazole administration for 7 days, bilateral pulmonary lobectomy was done after hepatic ischemia-reperfusion); and a methimazole +L-thyroxine-ischemia-reperfusion group (following methimazole and L-thyroxine administration for 7 days, bilateral pulmonary lobectomy was performed after hepatic ischemia-reperfusion). Pulmonary tissue specimens were evaluated histopathologically and for myeloperoxidase and malondialdehyde levels.. All of the ischemia-reperfusion intervention groups had higher pulmonary injury scoring indices than the control group (P < 0.001). Pulmonary injury index of the ischemia-reperfusion group was higher than that of both the methimazole-supplemented hypothyroid and euthyroid groups (P = 0028; P = 0,038, respectively) and was similar to that of the thyroidectomized group. Pulmonary tissue myeloperoxidase and malondialdehyde levels in the ischemia-reperfusion group were similar with that in the thyroidectomized rats but were significantly higher than that in the control, and both the methimazole-supplemented hypothyroid and euthyroid groups.. Methimazole exerts a protective role on lungs during hepatic ischemia-reperfusion injury, which can be attributed to its anti-inflammatory and anti-oxidant effects rather than hypothyroidism alone.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Antithyroid Agents; Disease Models, Animal; Hepatic Artery; Liver; Lung; Lung Diseases; Male; Malondialdehyde; Methimazole; Peroxidase; Pneumonectomy; Portal Vein; Rats; Rats, Wistar; Reperfusion Injury; Thyroidectomy; Thyroxine

2007
Reduction in oxidative stress and cell death explains hypothyroidism induced neuroprotection subsequent to ischemia/reperfusion insult.
    Experimental neurology, 2006, Volume: 200, Issue:2

    Hypometabolic state following hypothermia is known to protect tissues from ischemic injury. Hypothyroidism produces a hypometabolic state. The present study was undertaken to investigate the protective effects of hypothyroidism following cerebral ischemia and to ascertain the underlying mechanism. Euthyroid (E) and hypothyroid (H) animals were exposed to a 2 h of middle cerebral artery occlusion followed by 24 h of reperfusion (I/R). Specific enzymatic methods and flowcytometry were used to assess the quantitative changes of molecules involved in neuronal damage as well as in protection. As compared to euthyroid ischemic reperfused (E + I/R) rats, H + I/R rats had insignificant neurological deficit, and smaller area of infarct. H + I/R rats had significantly lower markers of oxidative stress, and lactate dehydrogenase (LDH) activity (a marker for necrosis). Natural antioxidant activity (particularly superoxide dismutase) and integrity of mitochondria (membrane potential) were maintained in H + I/R group but not in E + I/R group. The number of neurons undergoing apoptosis significantly lower in hypothyroid ischemic rats as compared to euthyroid ones. These results suggest that hypothyroid animals face ischemia and reperfusion much better compared to euthyroid animals. A possible explanation could be the decreased oxidative stress and maintained antioxidant activity that finally leads to a decrease in necrosis and apoptosis. These observations may suggest strategies to induce brain-specific downregulation of metabolism that may have implications in the management of strokes in human beings.

    Topics: Animals; Brain Infarction; Calcium; Catalase; Cell Death; Disease Models, Animal; Hypothyroidism; Imidazoles; In Situ Nick-End Labeling; Lipid Peroxidation; Male; NADP; Neurologic Examination; Neuroprotective Agents; Nitrites; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Reperfusion Injury; Tetrazolium Salts

2006
Effects of antioxidants on the blood-brain barrier and postischemic hyperemia.
    Acta neurochirurgica, 1994, Volume: 131, Issue:3-4

    The role of free oxygen radicals in blood-brain barrier (BBB) disruption and postischemic hyperemia was evaluated in the rabbit model of focal cerebral ischemia-reperfusion. Six groups of rabbits underwent clipping of the anterior cerebral, middle cerebral, and intracranial internal carotid arteries. Cerebral blood flow (CBF) was measured by using radiolabeled microspheres, before, during, and 15 minutes after 1-hour occlusion of these arteries. After 50 minutes of ischemia, Group 1 animals (control) received a placebo. Animals in Groups 2-4 received one of three drugs: catalase at 10 mg/kg, methimazole at 5 mg/kg, or indomethacin at 10 mg/kg. A fifth group received a tungsten-supplemented diet for 14 days before ischemia was induced, and a sixth group was sham operated. Microvascular integrity within the brain was determined by the presence or absence of Evan's Blue (EB)-albumin dye leakage across the BBB and was measured by microspectrofluorometry. In the control group during ischemia, CBF dropped to 14%, 7%, and 11% of preischemic levels in rostral, middle, and caudal sections of the brain, respectively, as characterized by extensive EB-albumin dye leakage through the BBB into the ischemic hemisphere. During early reperfusion, postischemic hyperemia was associated with an increase in CBF of 128%, 123%, and 129% of control in the rostral, middle, and caudal sections of the brain, respectively. In all treated groups and in the group receiving a tungsten-supplemented diet, BBB integrity was protected during reperfusion without inhibition of postischemic hyperemia. This study suggests that early disruption of the BBB to large molecules is mediated by free oxygen radicals, which inhibit rather than cause postischemic hyperemia.

    Topics: Animals; Antioxidants; Blood Flow Velocity; Blood-Brain Barrier; Brain; Brain Ischemia; Capillary Permeability; Catalase; Free Radicals; Hyperemia; Indomethacin; Methimazole; Rabbits; Reactive Oxygen Species; Regional Blood Flow; Reperfusion Injury; Serum Albumin; Tungsten

1994