Page last updated: 2024-10-16

methane and Experimental Lung Inflammation

methane has been researched along with Experimental Lung Inflammation in 99 studies

Methane: The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
methane : A one-carbon compound in which the carbon is attached by single bonds to four hydrogen atoms. It is a colourless, odourless, non-toxic but flammable gas (b.p. -161degreeC).

Experimental Lung Inflammation: Inflammation of any part, segment or lobe, of the lung parenchyma.

Research Excerpts

ExcerptRelevanceReference
"The aim of our study was to compare lung inflammatory response and histology changes following exposure of mice to two widely used nanoparticles: carbon nanotubes (MWCNT) and cadmium-based nanoparticles (QDOT705) in an attempt to better our understanding of granulomatous inflammation."3.88Granulomatous lung inflammation is nanoparticle type-dependent. ( Bentaher, A; Bernaudin, JF; Calender, A; Freti, D; Iglarz, M; Lebecque, S; Pacheco, Y; Ponchon, M; Renno, T; Strasser, DS; Studer, R; Valeyre, D, 2018)
" Studies show that CNTs are toxic and that the extent of that toxicity depends on properties of the CNTs, such as their structure (single wall or multiple wall), length and aspects ratios, surface area, degree of aggregation, extent of oxidation, bound functional group(s), method of manufacturing, concentration, and dose."2.47Pulmonary toxicity of carbon nanotubes: a systematic report. ( Gajbhiye, V; Jain, NK; Kayat, J; Tekade, RK, 2011)
" Comparative toxicity studies in which mice were given equal weights of test materials showed that SWCNTs were more toxic than quartz, which is considered a serious occupational health hazard if it is chronically inhaled; ultrafine carbon black was shown to produce minimal lung responses."2.43A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. ( Arepalli, S; Hunter, RL; James, JT; Lam, CW; McCluskey, R, 2006)
"The results of pulmonary inflammation and recovery following intratracheal instillation with SCFs at doses of 0."1.72Pulmonary toxicity, cytotoxicity, and genotoxicity of submicron-diameter carbon fibers with different diameters and lengths. ( Fujita, K; Maru, J; Obara, S, 2022)
"Thus, MWCNT exposure induced pulmonary inflammation that was largely independent of MMP activity but generated circulating bioactive peptides through predominantly MMP-dependent pathways."1.62Pulmonary delivery of the broad-spectrum matrix metalloproteinase inhibitor marimastat diminishes multiwalled carbon nanotube-induced circulating bioactivity without reducing pulmonary inflammation. ( Begay, JG; Campen, MJ; Denson, JL; Erdely, A; Fraser, K; Herbert, G; Hunter, R; Lucas, SN; Mostovenko, E; Ottens, AK; Salazar, R; Wang, T; Young, TL; Zychowski, K, 2021)
"To understand how ENM-induced pulmonary inflammation is resolved, we analyzed the inflammatory and pro-resolving responses to fibrogenic multi-walled carbon nanotubes (MWCNTs, Mitsui-7) and low-toxicity fullerenes (fullerene C60, C60F)."1.56Resolution of Pulmonary Inflammation Induced by Carbon Nanotubes and Fullerenes in Mice: Role of Macrophage Polarization. ( Andrew, ME; Barnes, MA; Battelli, LA; Beezhold, DH; Croston, TL; Green, BJ; Lim, CS; Ma, Q; Orandle, MS; Porter, DW; Siegel, PD; Wolfarth, MG, 2020)
"The main distribution of pulmonary inflammation by both delivery devices was in the centrilobular spaces in the lung."1.48Basic study of intratracheal instillation study of nanomaterials for the estimation of the hazards of nanomaterials. ( Endoh, S; Fujisawa, Y; Fujita, K; Honda, K; Izumi, H; Maru, J; Morimoto, Y; Yatera, K; Yoshiura, Y, 2018)
" We claim that a compound with anti-inflammatory and antioxidant activity may ameliorate the CNT-induced toxic effect."1.48Multi-walled carbon nanotube-induced inhalation toxicity: Recognizing nano bis-demethoxy curcumin analog as an ameliorating candidate. ( Devasena, T; Francis, AP; Ganapathy, S; Murthy, PB; Palla, VR; Ramaprabhu, S, 2018)
"In these 18-month-old mice, NPs caused pulmonary inflammation (without evidence of oxidative stress) accompanied by large increases in coagulation factor VIII up to 8 weeks after the last NP exposure."1.48Nanoparticles in the lungs of old mice: Pulmonary inflammation and oxidative stress without procoagulant effects. ( Casas, L; Hemmeryckx, B; Hoet, PHM; Luyts, K; Nemery, B; Poels, K; Scheers, H; Van Den Broucke, S; Vanoirbeek, J, 2018)
"Therefore, both rigidity and genetic susceptibility should be major considerations for risk assessment of MWCNTs."1.46STAT1-dependent and -independent pulmonary allergic and fibrogenic responses in mice after exposure to tangled versus rod-like multi-walled carbon nanotubes. ( Bonner, JC; Dandley, EC; Duke, KS; Ihrie, MD; Parsons, GN; Shipkowski, KA; Taylor-Just, AJ; Thompson, EA, 2017)
"Thus, MWCNT-induced carcinogenesis may involve ongoing low levels of DNA damage in an environment of persisting fibres, chronic inflammation and tissue irritation, and parallel increases or decreases in the expression of genes involved in several pro-carcinogenic pathways."1.46Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis. ( Aziz, SA; Halappanavar, S; Jacobsen, NR; Rahman, L; Vogel, U; Wallin, H; White, P; Williams, A; Wu, D; Yauk, CL, 2017)
" Our results confirm the toxicity of p-MWCNTs and demonstrate, also for the two kinds of tested functionalized MWCNTs toxic effects with a different mechanism of action."1.43Evaluation of uptake, cytotoxicity and inflammatory effects in respiratory cells exposed to pristine and -OH and -COOH functionalized multi-wall carbon nanotubes. ( Buresti, G; Cavallo, D; Ciervo, A; Fresegna, AM; Iavicoli, S; Maiello, R; Marchetti, M; Superti, F; Ursini, CL, 2016)
" The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects."1.43Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. ( Atluri, R; Bengtson, S; Berthing, T; Clausen, PA; Jackson, P; Jensen, KA; Kling, K; Knudsen, KB; Kyjovska, ZO; Poulsen, SS; Skaug, V; Thomsen, BL; Vogel, U; Wallin, H; Wolff, H, 2016)
" The evaluation of the intrinsic hazard properties of Graphistrength(©) C100 is an essential step for safe use."1.42Lung inflammation and lack of genotoxicity in the comet and micronucleus assays of industrial multiwalled carbon nanotubes Graphistrength(©) C100 after a 90-day nose-only inhalation exposure of rats. ( Beausoleil, J; Bessibes, C; Chabagno, JM; Dony, E; Gaering, S; Le Net, JL; Nesslany, F; Okazaki, Y; Pothmann, D; Régnier, JF; Schuler, D; Simar, S, 2015)
"The mechanisms governing CNT-induced lung inflammation are not fully understood but have been suggested to involve alveolar macrophages (AMs)."1.42MyD88 mediates in vivo effector functions of alveolar macrophages in acute lung inflammatory responses to carbon nanotube exposure. ( Birch, ME; Frank, EA; Yadav, JS, 2015)
"Biomarkers for pulmonary inflammation included cytokines, mediators and the presence of inflammatory cells (IL-1β, IL-18, IL-33, cathepsin B and neutrophils) and markers of injury (albumin and lactate dehydrogenase)."1.40Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. ( Andrew, M; Chen, TH; Friend, S; Hamilton, RF; Holian, A; Hubbs, A; Porter, DW; Sager, TM; Wolfarth, MW; Wu, N; Yang, F, 2014)
" In addition, we compared pulmonary responses to SWCNT by bolus dosing through pharyngeal aspiration and inhalation 5 h/day for 4 days, to evaluate the effect of dose rate."1.40Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. ( Castranova, V; Chirila, MM; Hubbs, A; Kagan, VE; Keohavong, P; Kisin, ER; Murray, AR; Shvedova, AA; Sycheva, LP; Tkach, AV; Yanamala, N, 2014)
"Marked eosinophilia was accompanied by mucus hypersecretion, AHR and the expression of Th2-type cytokines."1.40Inhalation of rod-like carbon nanotubes causes unconventional allergic airway inflammation. ( Alenius, H; Fortino, V; Greco, D; Hämeri, KJ; Ilves, M; Kinaret, PA; Koivisto, AJ; Lehto, MT; Matikainen, S; Pulkkinen, V; Rydman, EM; Savinko, TS; Savolainen, KM; Vippola, M; Wolff, H, 2014)
"Theoretically, lung inflammation due to particle exposure could interfere with female reproductive parameters."1.39Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. ( Birkedal, RK; Brunelli, A; De Temmerman, PJ; Hougaard, KS; Jackson, P; Jensen, KA; Kyjovska, ZO; Madsen, AM; Marcomini, A; Mast, J; Mortensen, A; Pojana, G; Saber, AT; Szarek, J; Verleysen, E; Vogel, U; Wallin, H, 2013)
"MWCNT-induced pulmonary inflammation was assessed by determining whole lung lavage (WLL) polymorphonuclear leukocytes (PMN)."1.39Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes. ( Andrew, M; Battelli, L; Castranova, V; Chen, BT; Endo, M; Frazer, DG; Hubbs, AF; Leonard, S; McKinney, W; Mercer, RR; Munekane, F; Porter, DW; Sriram, K; Tsukada, T; Tsuruoka, S; Willard, P; Wolfarth, MG; Wu, N, 2013)
" While the toxicity and hazardous outcomes elicited by airborne exposure to single-walled CNT or asbestos have been widely reported, very limited data are currently available describing adverse effects of respirable CNF."1.38Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. ( Fadeel, B; Kagan, VE; Kisin, ER; Mercer, R; Murray, AR; Shvedova, AA; Tkach, AV; Yanamala, N; Young, SH, 2012)
" The SWCNTs were instilled at a dosage of 0."1.38In vivo genotoxicity study of single-wall carbon nanotubes using comet assay following intratracheal instillation in rats. ( Ema, M; Endoh, S; Fukumuro, M; Hasegawa, K; Hayashi, M; Honda, K; Kobayashi, N; Maru, J; Nakajima, M; Nakanishi, J; Naya, M; Tanaka, J, 2012)
"The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations."1.38Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. ( Andrew, ME; Castranova, V; Chen, BT; Cumpston, AM; Frazer, DG; McKinney, W; Mercer, RR; Minarchick, VC; Nurkiewicz, TR; Sager, TM; Scabilloni, J; Stapleton, PA, 2012)
" We assessed the onset of pulmonary toxic effects caused by pristine MW-CNTs and functionalized MW-NH₂ or MW-COOH, 16 days after intratracheal instillation (1 mg/kg b."1.37Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes intratracheally instilled in rats: morphohistochemical evaluations. ( Acerbi, D; Barni, S; Coccini, T; Manzo, L; Roda, E; Vaccarone, R, 2011)
"Lung granulomas are associated with numerous conditions, including inflammatory disorders, exposure to environmental pollutants, and infection."1.37Novel murine model of chronic granulomatous lung inflammation elicited by carbon nanotubes. ( Barna, BP; Chen, P; Dobbs, L; Huizar, I; Kavuru, MS; Ke, PC; Kukoly, C; Malur, A; Midgette, YA; Podila, R; Rao, AM; Thomassen, MJ; Wingard, CJ, 2011)
"Rapid development of pulmonary fibrosis in mice that inhaled CNT was also confirmed by significant increases in the collagen level."1.37Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice. ( Baluchamy, S; Biradar, S; Goornavar, V; Gopikrishnan, R; Hall, JC; Jeffers, R; Ramesh, GT; Ramesh, V; Ravichandran, P; Thomas, R; Wilson, BL, 2011)
" Hence, the etiopathological sequence of inflammatory events caused by this type of MWCNT appears to be related to the high displacement volume of the low-density MWCNT assemblage structure rather than to any yet ill-defined intrinsic toxic property."1.36Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. ( Pauluhn, J, 2010)
" In order to investigate the pulmonary toxicity of MWCNT, we conducted an in vivo dose-response and time course study of MWCNT in mice in order to assess their ability to induce pulmonary inflammation, damage, and fibrosis using doses that approximate estimated human occupational exposures."1.36Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. ( Andrew, M; Battelli, L; Castranova, V; Chen, BT; Endo, M; Friend, S; Hubbs, AF; Leonard, S; Mercer, RR; Porter, DW; Schwegler-Berry, D; Sriram, K; Tsuruoka, S; Wolfarth, MG; Wu, N, 2010)
" This paper focuses on the dose-response and time course of pulmonary toxicity of Baytubes, a more flexible MWCNT type with the tendency to form assemblages of nanotubes."1.36Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit. ( Pauluhn, J, 2010)
" ACE, MDA, GSH, TSH and histopathological changes showed that tau-MWNTs were less toxic than the raw MWNTs."1.36Pulmonary toxicity in mice exposed to low and medium doses of water-soluble multi-walled carbon nanotubes. ( Deng, XY; Gu, YQ; Jia, G; Liu, ZH; Nie, H; Wang, H; Wang, TC; Wang, X; Zang, JJ, 2010)
" Because of their unique properties, nanotubes can impose potentially toxic effects, particularly if they have been modified to express functionally reactive chemical groups on their surface."1.35Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. ( Devlin, RB; Gilmour, MI; Kodavanti, UP; McGee, JK; Saxena, RK; Tong, H, 2009)
"The time course of pulmonary inflammation associated with retained MWCNT was independent on the concentration of residual cobalt."1.35Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period. ( Ellinger-Ziegelbauer, H; Pauluhn, J, 2009)
"CNT induce a robust pulmonary inflammation and oxidative stress in rodents."1.35Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. ( Antonini, JM; Barchowsky, A; Castranova, V; Fabisiak, JP; Feng, WH; Kagan, VE; Kisin, ER; Kommineni, C; Murray, AR; Reynolds, J; Roberts, JR; Shvedova, AA; Tyurina, YY, 2008)
"Ozone (O3) is a well-investigated gaseous air pollutant known to produce acute and chronic toxicity in the respiratory system."1.35Acute pulmonary effects of combined exposure to carbon nanotubes and ozone in mice. ( Andrews, R; Bhalla, DK; Gairola, CG; Han, SG, 2008)
"The mild CNT-induced lung inflammation translates via rapid but mild and transient activation of platelets into P-selectin-mediated systemic inflammation."1.34Enhanced peripheral thrombogenicity after lung inflammation is mediated by platelet-leukocyte activation: role of P-selectin. ( Dinsdale, D; Hoet, PH; Hoylaerts, MF; Nemery, B; Nemmar, A; Vandervoort, P, 2007)

Research

Studies (99)

TimeframeStudies, this research(%)All Research%
pre-19901 (1.01)18.7374
1990's0 (0.00)18.2507
2000's9 (9.09)29.6817
2010's78 (78.79)24.3611
2020's11 (11.11)2.80

Authors

AuthorsStudies
Brown, LH1
Chaiechi, T1
Buettner, PG1
Canyon, DV1
Halim, AA1
Alsayed, B1
Embarak, S1
Yaseen, T1
Dabbous, S1
Fontaine, O1
Dueluzeau, R1
Raibaud, P1
Chabanet, C1
Popoff, MR1
Badoual, J1
Gabilan, JC1
Andremont, A1
Gómez, L1
Andrés, S1
Sánchez, J1
Alonso, JM1
Rey, J1
López, F1
Jiménez, A1
Yan, Z1
Zhou, L1
Zhao, Y4
Wang, J6
Huang, L2
Hu, K1
Liu, H4
Wang, H4
Guo, Z1
Song, Y1
Huang, H4
Yang, R1
Owen, TW1
Al-Kaysi, RO1
Bardeen, CJ1
Cheng, Q1
Wu, S1
Cheng, T1
Zhou, X1
Wang, B5
Zhang, Q4
Wu, X2
Yao, Y3
Ochiai, T1
Ishiguro, H2
Nakano, R2
Kubota, Y2
Hara, M1
Sunada, K1
Hashimoto, K1
Kajioka, J1
Fujishima, A1
Jiao, J3
Gai, QY3
Wang, W2
Zang, YP2
Niu, LL2
Fu, YJ3
Wang, X8
Yao, LP1
Qin, QP1
Wang, ZY1
Liu, J4
Aleksic Sabo, V1
Knezevic, P1
Borges-Argáez, R1
Chan-Balan, R1
Cetina-Montejo, L1
Ayora-Talavera, G1
Sansores-Peraza, P1
Gómez-Carballo, J1
Cáceres-Farfán, M1
Jang, J1
Akin, D1
Bashir, R1
Yu, Z1
Zhu, J3
Jiang, H2
He, C2
Xiao, Z1
Xu, J2
Sun, Q1
Han, D1
Lei, H1
Zhao, K2
Zhu, L1
Li, X4
Fu, H2
Wilson, BK1
Step, DL1
Maxwell, CL1
Gifford, CA1
Richards, CJ1
Krehbiel, CR1
Warner, JM1
Doerr, AJ1
Erickson, GE1
Guretzky, JA1
Rasby, RJ1
Watson, AK1
Klopfenstein, TJ1
Sun, Y4
Liu, Z3
Pham, TD1
Lee, BK1
Yang, FC1
Wu, KH1
Lin, WP1
Hu, MK1
Lin, L3
Shao, J1
Sun, M1
Xu, G1
Zhang, X7
Xu, N1
Wang, R1
Liu, S1
He, H1
Dong, X2
Yang, M2
Yang, Q2
Duan, S1
Yu, Y2
Han, J2
Zhang, C3
Chen, L2
Yang, X1
Li, W3
Wang, T3
Campbell, DA1
Gao, K1
Zager, RA1
Johnson, ACM1
Guillem, A1
Keyser, J1
Singh, B1
Steubl, D1
Schneider, MP1
Meiselbach, H1
Nadal, J1
Schmid, MC1
Saritas, T1
Krane, V1
Sommerer, C1
Baid-Agrawal, S1
Voelkl, J1
Kotsis, F1
Köttgen, A1
Eckardt, KU1
Scherberich, JE1
Li, H4
Yao, L2
Sun, L3
Zhu, Z1
Naren, N1
Zhang, XX2
Gentile, GL1
Rupert, AS1
Carrasco, LI1
Garcia, EM1
Kumar, NG1
Walsh, SW1
Jefferson, KK1
Guest, RL1
Samé Guerra, D1
Wissler, M1
Grimm, J1
Silhavy, TJ1
Lee, JH2
Yoo, JS1
Kim, Y1
Kim, JS2
Lee, EJ1
Roe, JH1
Delorme, M1
Bouchard, PA1
Simon, M1
Simard, S1
Lellouche, F1
D'Urzo, KA1
Mok, F1
D'Urzo, AD1
Koneru, B1
Lopez, G1
Farooqi, A1
Conkrite, KL1
Nguyen, TH1
Macha, SJ1
Modi, A1
Rokita, JL1
Urias, E1
Hindle, A1
Davidson, H1
Mccoy, K1
Nance, J1
Yazdani, V1
Irwin, MS1
Yang, S1
Wheeler, DA1
Maris, JM1
Diskin, SJ1
Reynolds, CP1
Abhilash, L1
Kalliyil, A1
Sheeba, V1
Hartley, AM2
Meunier, B2
Pinotsis, N1
Maréchal, A2
Xu, JY1
Genko, N1
Haraux, F1
Rich, PR1
Kamalanathan, M1
Doyle, SM1
Xu, C1
Achberger, AM1
Wade, TL1
Schwehr, K1
Santschi, PH1
Sylvan, JB1
Quigg, A1
Leong, W1
Xu, W2
Gao, S2
Zhai, X1
Wang, C2
Gilson, E1
Ye, J1
Lu, Y1
Yan, R1
Zhang, Y6
Hu, Z1
You, Q1
Cai, Q1
Yang, D1
Gu, S1
Dai, H1
Zhao, X1
Gui, C1
Gui, J1
Wu, PK1
Hong, SK1
Starenki, D1
Oshima, K1
Shao, H1
Gestwicki, JE1
Tsai, S1
Park, JI1
Wang, Y7
Zhao, R1
Gu, Z1
Dong, C2
Guo, G1
Li, L4
Barrett, HE1
Meester, EJ1
van Gaalen, K1
van der Heiden, K1
Krenning, BJ1
Beekman, FJ1
de Blois, E1
de Swart, J1
Verhagen, HJ1
Maina, T1
Nock, BA1
Norenberg, JP1
de Jong, M1
Gijsen, FJH1
Bernsen, MR1
Martínez-Milla, J1
Galán-Arriola, C1
Carnero, M1
Cobiella, J1
Pérez-Camargo, D1
Bautista-Hernández, V1
Rigol, M1
Solanes, N1
Villena-Gutierrez, R1
Lobo, M1
Mateo, J1
Vilchez-Tschischke, JP1
Salinas, B1
Cussó, L1
López, GJ1
Fuster, V1
Desco, M1
Sanchez-González, J1
Ibanez, B1
van den Berg, P1
Schweitzer, DH1
van Haard, PMM1
Geusens, PP1
van den Bergh, JP1
Zhu, X1
Huang, X2
Xu, H2
Yang, G2
Lin, Z1
Salem, HF1
Nafady, MM1
Kharshoum, RM1
Abd El-Ghafar, OA1
Farouk, HO1
Domiciano, D1
Nery, FC1
de Carvalho, PA1
Prudente, DO1
de Souza, LB1
Chalfun-Júnior, A1
Paiva, R1
Marchiori, PER1
Lu, M2
An, Z1
Jiang, J2
Li, J8
Du, S1
Zhou, H1
Cui, J1
Wu, W1
Liu, Y8
Song, J1
Lian, Q1
Uddin Ahmad, Z1
Gang, DD1
Konggidinata, MI1
Gallo, AA1
Zappi, ME1
Yang, TWW1
Johari, Y1
Burton, PR1
Earnest, A1
Shaw, K1
Hare, JL1
Brown, WA1
Kim, GA1
Han, S1
Choi, GH1
Choi, J1
Lim, YS1
Gallo, A1
Cancelli, C1
Ceron, E1
Covino, M1
Capoluongo, E1
Pocino, K1
Ianiro, G1
Cammarota, G1
Gasbarrini, A1
Montalto, M1
Somasundar, Y1
Lu, IC1
Mills, MR1
Qian, LY1
Olivares, X1
Ryabov, AD1
Collins, TJ1
Zhao, L1
Doddipatla, S1
Thomas, AM1
Nikolayev, AA1
Galimova, GR1
Azyazov, VN1
Mebel, AM1
Kaiser, RI1
Guo, S1
Yang, P1
Yu, X2
Wu, Y2
Zhang, H1
Yu, B2
Han, B2
George, MW1
Moor, MB1
Bonny, O1
Langenberg, E1
Paik, H1
Smith, EH1
Nair, HP1
Hanke, I1
Ganschow, S1
Catalan, G1
Domingo, N1
Schlom, DG1
Assefa, MK1
Wu, G2
Hayton, TW1
Becker, B1
Enikeev, D1
Netsch, C1
Gross, AJ1
Laukhtina, E1
Glybochko, P1
Rapoport, L1
Herrmann, TRW1
Taratkin, M1
Dai, W1
Shi, J3
Carreno, J1
Kloner, RA1
Pickersgill, NA1
Vetter, JM1
Kim, EH1
Cope, SJ1
Du, K1
Venkatesh, R1
Giardina, JD1
Saad, NES1
Bhayani, SB1
Figenshau, RS1
Eriksson, J1
Landfeldt, E1
Ireland, S1
Jackson, C1
Wyatt, E1
Gaudig, M1
Stancill, JS1
Happ, JT1
Broniowska, KA1
Hogg, N1
Corbett, JA1
Tang, LF1
Bi, YL1
Fan, Y2
Sun, YB1
Wang, AL1
Xiao, BH1
Wang, LF1
Qiu, SW1
Guo, SW1
Wáng, YXJ1
Sun, J2
Chu, S1
Pan, Q1
Li, D2
Zheng, S2
Ma, L1
Wang, L4
Hu, T1
Wang, F1
Han, Z1
Yin, Z1
Ge, X1
Xie, K1
Lei, P1
Dias-Santagata, D1
Lennerz, JK1
Sadow, PM1
Frazier, RP1
Govinda Raju, S1
Henry, D1
Chung, T1
Kherani, J1
Rothenberg, SM1
Wirth, LJ1
Marti, CN1
Choi, NG1
Bae, SJ1
Ni, L1
Luo, X1
Dai, T1
Yang, Y3
Lee, R1
Fleischer, AS1
Wemhoff, AP1
Ford, CR1
Kleppinger, EL1
Helms, K1
Bush, AA1
Luna-Abanto, J1
García Ruiz, L1
Laura Martinez, J1
Álvarez Larraondo, M1
Villoslada Terrones, V1
Dukic, L1
Maric, N1
Simundic, AM1
Chogtu, B1
Ommurugan, B1
Thomson, SR1
Kalthur, SG1
Benidir, M1
El Massoudi, S1
El Ghadraoui, L1
Lazraq, A1
Benjelloun, M1
Errachidi, F1
Cassar, M1
Law, AD1
Chow, ES1
Giebultowicz, JM1
Kretzschmar, D1
Salonurmi, T1
Nabil, H1
Ronkainen, J1
Hyötyläinen, T1
Hautajärvi, H1
Savolainen, MJ1
Tolonen, A1
Orešič, M1
Känsäkoski, P1
Rysä, J1
Hakkola, J1
Hukkanen, J1
Zhu, N1
Li, Y5
Du, Q1
Hao, P1
Cao, X1
Li, CX1
Zhao, S1
Luo, XM1
Feng, JX1
Gonzalez-Cotto, M1
Guo, L1
Karwan, M1
Sen, SK1
Barb, J1
Collado, CJ1
Elloumi, F1
Palmieri, EM1
Boelte, K1
Kolodgie, FD1
Finn, AV1
Biesecker, LG1
McVicar, DW1
Qu, F1
Deng, Z1
Xie, Y3
Tang, J3
Chen, Z2
Luo, W1
Xiong, D1
Zhao, D1
Fang, J1
Zhou, Z1
Niu, PP1
Song, B1
Xu, YM1
Zhang, Z3
Qiu, N1
Yin, J1
Zhang, J4
Guo, W1
Liu, M2
Liu, T2
Chen, D5
Luo, K1
He, Z2
Zheng, G1
Xu, F1
Sun, W1
Yin, F1
van Hest, JCM1
Du, L2
Shi, X1
Kang, S1
Duan, W1
Zhang, S2
Feng, J2
Qi, N1
Shen, G1
Ren, H1
Shang, Q1
Zhao, W2
Yang, Z2
Jiang, X2
Alame, M1
Cornillot, E1
Cacheux, V1
Tosato, G1
Four, M1
De Oliveira, L1
Gofflot, S1
Delvenne, P1
Turtoi, E1
Cabello-Aguilar, S1
Nishiyama, M1
Turtoi, A1
Costes-Martineau, V1
Colinge, J1
Guo, Q1
Quan, M1
Dong, J5
Bai, J1
Han, R1
Cai, Y1
Lv, YQ1
Chen, Q1
Lyu, HD1
Deng, L1
Zhou, D1
Xiao, X1
De Langhe, S1
Billadeau, DD1
Lou, Z1
Zhang, JS1
Xue, Z1
Shen, XD1
Gao, F1
Busuttil, RW1
Kupiec-Weglinski, JW1
Ji, H1
Otano, I1
Alvarez, M1
Minute, L1
Ochoa, MC1
Migueliz, I1
Molina, C1
Azpilikueta, A1
de Andrea, CE1
Etxeberria, I1
Sanmamed, MF1
Teijeira, Á1
Berraondo, P1
Melero, I1
Zhong, Z1
Xie, X1
Yu, Q1
Zhou, C1
Liu, C2
Liu, W1
Chen, W1
Yin, Y1
Li, CW1
Hsu, JL1
Zhou, Q1
Hu, B1
Fu, P1
Atyah, M1
Ma, Q6
Xu, Y1
Dong, Q1
Hung, MC1
Ren, N1
Huang, P1
Liao, R1
Chen, X3
Cao, Q1
Yuan, X1
Nie, W1
Yang, J2
Shao, B1
Ma, X1
Bi, Z1
Liang, X1
Tie, Y1
Mo, F1
Xie, D1
Wei, Y1
Wei, X2
Dokla, EME1
Fang, CS1
Chu, PC1
Chang, CS1
Abouzid, KAM1
Chen, CS1
Blaszczyk, R1
Brzezinska, J1
Dymek, B1
Stanczak, PS1
Mazurkiewicz, M1
Olczak, J1
Nowicka, J1
Dzwonek, K1
Zagozdzon, A1
Golab, J1
Golebiowski, A1
Xin, Z1
Himmelbauer, MK1
Jones, JH1
Enyedy, I1
Gilfillan, R1
Hesson, T1
King, K1
Marcotte, DJ1
Murugan, P1
Santoro, JC1
Gonzalez-Lopez de Turiso, F1
Pedron, J1
Boudot, C1
Brossas, JY1
Pinault, E1
Bourgeade-Delmas, S1
Sournia-Saquet, A1
Boutet-Robinet, E1
Destere, A1
Tronnet, A1
Bergé, J1
Bonduelle, C1
Deraeve, C1
Pratviel, G1
Stigliani, JL1
Paris, L1
Mazier, D1
Corvaisier, S1
Since, M1
Malzert-Fréon, A1
Wyllie, S1
Milne, R1
Fairlamb, AH1
Valentin, A1
Courtioux, B1
Verhaeghe, P1
Fang, X1
Gao, M1
Gao, H1
Bi, W1
Tang, H1
Cui, Y1
Zhang, L4
Fan, H1
Yu, H1
Mathison, CJN1
Chianelli, D1
Rucker, PV1
Nelson, J1
Roland, J1
Huang, Z2
Xie, YF1
Epple, R1
Bursulaya, B1
Lee, C1
Gao, MY1
Shaffer, J1
Briones, S1
Sarkisova, Y1
Galkin, A1
Li, N1
Li, C2
Hua, S1
Kasibhatla, S1
Kinyamu-Akunda, J1
Kikkawa, R1
Molteni, V1
Tellew, JE1
Jin, X1
Pang, B1
Liu, Q2
Liu, X3
Huang, Y2
Josephine Fauci, A1
Ma, Y1
Soo Lee, M1
Yuan, W1
Gao, R1
Qi, H1
Zheng, W1
Yang, F3
Chua, H1
Wang, K1
Ou, Y1
Huang, M1
Zhu, Y2
Yu, J1
Tian, J1
Zhao, M1
Hu, J1
Yao, C1
Zhang, B1
Usawachintachit, M1
Tzou, DT1
Washington, SL1
Hu, W1
Chi, T1
Sorensen, MD1
Bailey, MR1
Hsi, RS1
Cunitz, BW1
Simon, J1
Wang, YN1
Dunmire, BL1
Paun, M1
Starr, F1
Lu, W1
Evan, AP1
Harper, JD1
Han, G1
Rodrigues, AE1
Fouladvand, F1
Falahi, E1
Asbaghi, O1
Abbasnezhad, A1
Anigboro, AA1
Avwioroko, OJ1
Cholu, CO1
Sonei, A1
Fazelipour, S1
Kanaani, L1
Jahromy, MH1
Jo, K1
Hong, KB1
Suh, HJ1
Park, JH1
Shin, E1
Park, E1
Kouakou-Kouamé, CA1
N'guessan, FK1
Montet, D1
Djè, MK1
Kim, GD1
González-Fernández, D1
Pons, EDC1
Rueda, D1
Sinisterra, OT1
Murillo, E1
Scott, ME1
Koski, KG1
Shete, PB1
Gonzales, R1
Ackerman, S1
Cattamanchi, A1
Handley, MA1
Li, XX1
Xiao, SZ1
Gu, FF1
He, WP1
Ni, YX1
Han, LZ1
Heffernan, JK1
Valgepea, K1
de Souza Pinto Lemgruber, R1
Casini, I1
Plan, M1
Tappel, R1
Simpson, SD1
Köpke, M1
Nielsen, LK1
Marcellin, E1
Cen, YK1
Lin, JG1
Wang, YL1
Wang, JY1
Liu, ZQ1
Zheng, YG1
Spirk, D1
Noll, S1
Burnier, M1
Rimoldi, S1
Noll, G1
Sudano, I1
Penzhorn, BL1
Oosthuizen, MC1
Kobos, LM1
Alqatani, S1
Ferreira, CR1
Aryal, UK1
Hedrick, V1
Sobreira, TJP1
Shannahan, JH1
Gale, P1
Singhroy, DN1
MacLean, E1
Kohli, M1
Lessem, E1
Branigan, D1
England, K1
Suleiman, K1
Drain, PK1
Ruhwald, M1
Schumacher, S1
Denkinger, CM1
Waning, B1
Van Gemert, W1
Pai, M1
Myers, RK1
Bonsu, JM1
Carey, ME1
Yerys, BE1
Mollen, CJ1
Curry, AE1
Douglas, TA1
Alinezhadbalalami, N1
Balani, N1
Schmelz, EM1
Davalos, RV1
Kamaldinov, T1
Erndt-Marino, J1
Levin, M1
Kaplan, DL1
Hahn, MS1
Heidarimoghadam, R1
Farmany, A1
Lee, JJ1
Kang, J1
Park, S1
Cho, JH1
Oh, S1
Park, DJ1
Perez-Maldonado, R1
Cho, JY1
Park, IH1
Kim, HB1
Song, M1
Mfarrej, B1
Jofra, T1
Morsiani, C1
Gagliani, N1
Fousteri, G1
Battaglia, M1
Giuliano, C1
Levinger, I1
Vogrin, S1
Neil, CJ1
Allen, JD1
Lv, Y1
Yuan, R1
Cai, B1
Bahrami, B1
Chowdhury, AH1
Yang, C2
Qiao, Q1
Liu, SF1
Zhang, WH1
Kolano, L1
Knappe, D1
Volke, D1
Sträter, N1
Hoffmann, R1
Coussens, M1
Calders, P1
Lapauw, B1
Celie, B1
Banica, T1
De Wandele, I1
Pacey, V1
Malfait, F1
Rombaut, L1
Vieira, D1
Angel, S1
Honjol, Y1
Gruenheid, S1
Gbureck, U1
Harvey, E1
Merle, G1
Seo, G1
Lee, G1
Kim, MJ1
Baek, SH1
Choi, M1
Ku, KB1
Lee, CS1
Jun, S1
Park, D1
Kim, HG1
Kim, SJ1
Lee, JO1
Kim, BT1
Park, EC1
Kim, SI1
Ende, M1
Kirkkala, T1
Loitzenbauer, M1
Talla, D1
Wildner, M1
Miletich, R1
Criado, A1
Lavela, P1
Tirado, JL1
Pérez-Vicente, C1
Kang, D1
Feng, D2
Fang, Z1
Wei, F1
De Clercq, E1
Pannecouque, C1
Zhan, P1
Guo, Y1
Shen, Y1
Wang, Q2
Kawazoe, Y1
Jena, P1
Sun, Z1
Li, Z2
Liang, H1
Xu, X1
Ma, G1
Huo, X1
Church, JS1
Chace-Donahue, F1
Blum, JL1
Ratner, JR1
Zelikoff, JT1
Schwartzer, JJ1
Fiseha, T1
Tamir, Z1
Yao, W1
Wang, P1
Mi, K1
Cheng, J1
Gu, C1
Huang, J2
Sun, HB1
Xing, WQ1
Liu, XB1
Zheng, Y1
Yang, SJ1
Wang, ZF1
Liu, SL1
Ba, YF1
Zhang, RX1
Liu, BX1
Fan, CC1
Chen, PN1
Liang, GH1
Yu, YK1
Wang, HR1
Li, HM1
Li, ZX1
Lalani, SS1
Anasir, MI1
Poh, CL1
Khan, IT1
Nadeem, M1
Imran, M1
Khalique, A1
Raspini, B1
Porri, D1
De Giuseppe, R1
Chieppa, M1
Liso, M1
Cerbo, RM1
Civardi, E1
Garofoli, F1
Monti, MC1
Vacca, M1
De Angelis, M1
Cena, H1
Kong, D1
Han, X1
Zhou, Y3
Xue, H1
Zhang, W1
Ruan, Z1
Li, S3
Noer, PR1
Kjaer-Sorensen, K1
Juhl, AK1
Goldstein, A1
Ke, C1
Oxvig, C1
Duan, C1
Kong, F1
Lin, S1
Wang, Z3
Bhattacharya, R1
Mazumder, D1
Yan, X1
Ma, C1
Tang, Y1
Kong, X1
Lu, J1
Zhang, M1
Vital-Jacome, M1
Cazares-Granillo, M1
Carrillo-Reyes, J1
Buitron, G1
Jacob, SI1
Douair, I1
Maron, L1
Ménard, G1
Rusjan, P1
Sabioni, P1
Di Ciano, P1
Mansouri, E1
Boileau, I1
Laveillé, A1
Capet, M1
Duvauchelle, T1
Schwartz, JC1
Robert, P1
Le Foll, B1
Xia, Y1
Chen, S1
Luo, M1
Wu, J1
Cai, S1
He, Y2
Garbacz, P1
Misiak, M1
Jackowski, K1
Yuan, Q1
Sherrell, PC1
Chen, J2
Bi, X1
Nutho, B1
Mahalapbutr, P1
Hengphasatporn, K1
Pattaranggoon, NC1
Simanon, N1
Shigeta, Y1
Hannongbua, S1
Rungrotmongkol, T1
Caffrey, PJ1
Kher, R1
Bian, K1
Delaney, S1
Xue, J1
Wu, P2
Xu, L2
Yuan, Y1
Luo, J1
Ye, S1
Ustriyana, P1
Wei, B1
Raee, E1
Hu, Y1
Wesdemiotis, C1
Sahai, N1
Kaur, A1
Nigam, K1
Srivastava, S1
Tyagi, A1
Dang, S1
Millar, JE1
Bartnikowski, N1
Passmore, MR1
Obonyo, NG1
Malfertheiner, MV1
von Bahr, V1
Redd, MA1
See Hoe, L1
Ki, KK1
Pedersen, S1
Boyle, AJ1
Baillie, JK1
Shekar, K1
Palpant, N1
Suen, JY1
Matthay, MA1
McAuley, DF1
Fraser, JF1
Settles, JA1
Gerety, GF1
Spaepen, E1
Suico, JG1
Child, CJ1
Oh, BL1
Lee, JS1
Lee, EY1
Lee, HY2
Yu, HG1
Leslie, I1
Boos, LA1
Larkin, J1
Pickering, L1
Lima, HK1
Vogel, K1
Hampel, D1
Wagner-Gillespie, M1
Fogleman, AD1
Ferraz, SL1
O'Connor, M1
Mazzucchelli, TG1
Kajiyama, H1
Suzuki, S1
Shimbo, A1
Utsumi, F1
Yoshikawa, N1
Kikkawa, F1
Javvaji, PK1
Dhali, A1
Francis, JR1
Kolte, AP1
Roy, SC1
Selvaraju, S1
Mech, A1
Sejian, V1
DeSilva, S1
Vaidya, SS1
Mao, C1
Akhatayeva, Z1
Cheng, H1
Zhang, G1
Jiang, F1
Meng, X1
Elnour, IE1
Lan, X1
Song, E1
Rohde, S1
Antonides, CFJ1
Muslem, R1
de Woestijne, PCV1
der Meulen, MHV1
Kraemer, US1
Dalinghaus, M1
Bogers, AJJC1
Pourmand, A1
Ghassemi, M1
Sumon, K1
Amini, SB1
Hood, C1
Sikka, N1
Duan, H1
Chen, WP1
Fan, M1
Wang, WP1
Yu, L1
Tan, SJ1
Xin, S1
Wan, LJ1
Guo, YG1
Tanda, S1
Gingl, K1
Ličbinský, R1
Hegrová, J1
Goessler, W1
Li, ZL1
Zhou, YL1
Yan, W1
Luo, L1
Su, ZZ1
Fan, MZ1
Wang, SR1
Zhao, WG1
Xu, D1
Hassan, HM1
Jiang, Z1
Bachmann, KF1
Haenggi, M1
Jakob, SM1
Takala, J1
Gattinoni, L1
Berger, D1
Bentley, RF1
Vecchiarelli, E1
Banks, L1
Gonçalves, PEO1
Thomas, SG1
Goodman, JM1
Mather, K1
Boachie, R1
Anini, Y1
Panahi, S1
Anderson, GH1
Luhovyy, BL1
Nafie, MS1
Arafa, K1
Sedky, NK1
Alakhdar, AA1
Arafa, RK1
Fan, S1
Hu, H1
Liang, J1
Hu, BC1
Wen, Z1
Hu, D1
Liu, YY1
Chu, Q1
Wu, MC1
Lu, X2
Wang, D1
Hu, M1
Shen, H1
Yao, M1
Dahlgren, RA1
Vysloužil, J1
Kulich, P1
Zeman, T1
Vaculovič, T1
Tvrdoňová, M1
Mikuška, P1
Večeřa, Z1
Stráská, J1
Moravec, P1
Balcar, VJ1
Šerý, O1
Qiao, L1
Xiong, X1
Peng, X1
Zheng, J1
Duan, J1
Xiao, W1
Zhou, HY1
Sui, ZY1
Zhao, FL1
Sun, YN1
Wang, HY1
Han, BH1
Jintao, X1
Shasha, Y1
Jincai, W1
Chunyan, L1
Mengya, Y1
Yongli, S1
Rasoanirina, BNV1
Lassoued, MA1
Miladi, K1
Razafindrakoto, Z1
Chaâbane-Banaoues, R1
Ramanitrahasimbola, D1
Cornet, M1
Sfar, S1
Liang, C1
Xing, Q1
Yi, JL1
Zhang, YQ1
Li, CY1
Tang, SJ1
Gao, C1
Sun, X1
Peng, M1
Sun, XF1
Zhang, T1
Shi, JH1
Liao, CX1
Gao, WJ1
Sun, LL1
Gao, Y1
Cao, WH1
Lyu, J1
Yu, CQ1
Wang, SF1
Pang, ZC1
Cong, LM1
Dong, Z1
Wu, F1
Wu, XP1
Jiang, GH1
Wang, XJ1
Wang, BY1
Li, LM1
Pan, L1
Wan, SP1
Yi, HWL1
He, HJ1
Yong, ZP1
Shan, GL1
Weng, TT1
Yan, SQ1
Gao, GP1
Wei, C1
Tao, FB1
Shao, ZH1
Yao, T1
Dong, S1
Shi, S1
Feng, YL1
Zhang, YW1
Wang, SP1
Shi, AX1
Operario, D1
Zhang, ZH1
Zhu, XF1
Zaller, N1
Gao, P1
Sun, YH1
Zhang, HB1
TOYAMA, T1
YATSUI, T1
ABE, K1
Young, TL1
Mostovenko, E1
Denson, JL1
Begay, JG1
Lucas, SN1
Herbert, G1
Zychowski, K1
Hunter, R1
Salazar, R1
Fraser, K1
Erdely, A1
Ottens, AK1
Campen, MJ1
Fujita, K4
Obara, S1
Maru, J4
Soliman, E1
Bhalla, S1
Elhassanny, AEM1
Malur, A3
Ogburn, D1
Leffler, N1
Malur, AG1
Thomassen, MJ3
Bhattacharya, SS1
Yadav, B1
Rosen, L1
Nagpal, R1
Yadav, H1
Yadav, JS3
Zhang, XL1
Li, B1
Shen, T1
Tang, W1
Miyauchi, A1
Akashi, T1
Yokota, S1
Taquahashi, Y2
Hirose, A1
Hojo, M1
Yoshida, H1
Kurokawa, M1
Watanabe, W1
You, DJ1
Taylor-Just, A1
Tisch, LJ1
Bartone, RD1
Atkins, HM1
Ralph, LM1
Antoniak, S1
Bonner, JC3
Lim, CS1
Porter, DW8
Orandle, MS1
Green, BJ1
Barnes, MA1
Croston, TL1
Wolfarth, MG6
Battelli, LA2
Andrew, ME2
Beezhold, DH1
Siegel, PD1
Seidel, C1
Zhernovkov, V1
Cassidy, H1
Kholodenko, B1
Matallanas, D1
Cosnier, F1
Gaté, L1
Duke, KS1
Taylor-Just, AJ1
Ihrie, MD1
Shipkowski, KA1
Thompson, EA1
Dandley, EC1
Parsons, GN1
Morimoto, Y3
Izumi, H1
Yoshiura, Y1
Fujisawa, Y1
Yatera, K1
Endoh, S4
Honda, K4
Hamilton, RF5
Tsuruoka, S3
Wu, N6
Wolfarth, M1
Bunderson-Schelvan, M1
Holian, A7
Rahman, L1
Jacobsen, NR5
Aziz, SA1
Wu, D1
Williams, A2
Yauk, CL2
White, P1
Wallin, H7
Vogel, U8
Halappanavar, S2
Naya, M2
Takehara, H1
Kataura, H1
Ema, M2
Park, EJ2
Khaliullin, TO1
Shurin, MR3
Kisin, ER11
Yanamala, N5
Fadeel, B7
Chang, J1
Shvedova, AA11
Hadrup, N1
Bengtson, S2
Jackson, P5
Nocun, M1
Saber, AT3
Jensen, KA4
Pacheco, Y1
Ponchon, M1
Lebecque, S1
Calender, A1
Bernaudin, JF1
Valeyre, D1
Iglarz, M1
Strasser, DS1
Studer, R1
Freti, D1
Renno, T1
Bentaher, A1
Francis, AP1
Devasena, T1
Ganapathy, S1
Palla, VR1
Murthy, PB1
Ramaprabhu, S1
Ilves, M4
Vilske, S1
Aimonen, K1
Lindberg, HK1
Pesonen, S1
Wedin, I1
Nuopponen, M1
Vanhala, E2
Højgaard, C1
Winther, JR1
Willemoës, M1
Wolff, H6
Norppa, H1
Savolainen, K3
Alenius, H4
Knudsen, KB2
Berthing, T2
Poulsen, SS3
Mortensen, A3
Skaug, V2
Szarek, J2
Hougaard, KS2
Otsuka, K1
Yamada, K1
Arakaki, R1
Ushio, A1
Saito, M1
Yamada, A1
Tsunematsu, T1
Kudo, Y1
Kanno, J1
Ishimaru, N1
Luyts, K2
Van Den Broucke, S1
Hemmeryckx, B2
Poels, K2
Scheers, H2
Casas, L1
Vanoirbeek, J1
Nemery, B3
Hoet, PHM1
Wu, Z2
Deb, S1
Trout, KL1
Bhargava, R1
Mitra, S2
Bai, R2
Qian, W1
Yang, L1
Cai, R1
Yan, H1
Li, T1
Pandey, V1
Lobie, PE1
Chen, C2
Zhu, T1
Cole, E1
Ray, JL1
Bolten, S1
Shaw, PK1
Postma, B1
Buford, M3
Cho, YH2
Sager, TM2
Wolfarth, MW1
Andrew, M4
Hubbs, A2
Friend, S3
Chen, TH1
Tian, F1
Habel, NC1
Yin, R1
Hirn, S1
Banerjee, A1
Ercal, N1
Takenaka, S1
Estrada, G1
Kostarelos, K1
Kreyling, W1
Stoeger, T1
Kyjovska, ZO3
Birkedal, RK1
De Temmerman, PJ1
Brunelli, A1
Verleysen, E1
Madsen, AM1
Pojana, G1
Mast, J1
Marcomini, A1
Di, YP1
Tkach, AV5
Stanley, S1
Kagan, VE8
Shvedova, A1
Bhattacharya, K1
Andón, FT1
El-Sayed, R1
Snyder-Talkington, BN2
Dymacek, J2
Mercer, RR7
Pacurari, M1
Denvir, J1
Castranova, V9
Qian, Y2
Guo, NL2
Scabilloni, JF1
Hubbs, AF4
McKinney, W3
Lee, BW1
Kadoya, C1
Horie, M1
Mizuguchi, Y1
Hashiba, M1
Kambara, T1
Okada, T1
Myojo, T1
Oyabu, T1
Ogami, A1
Tanaka, I1
Uchida, K1
Nakanishi, J2
Murray, AR9
Chirila, MM1
Keohavong, P1
Sycheva, LP1
Pauluhn, J4
van Berlo, D1
Wilhelmi, V1
Boots, AW1
Hullmann, M1
Kuhlbusch, TA1
Bast, A1
Schins, RP1
Albrecht, C1
Mouithys-Mickalad, A1
Stadler, K1
Mason, RP1
Kadiiska, M1
Rydman, EM2
Koivisto, AJ1
Kinaret, PA2
Fortino, V2
Savinko, TS1
Lehto, MT1
Pulkkinen, V1
Vippola, M2
Hämeri, KJ1
Matikainen, S1
Savolainen, KM1
Greco, D3
Smulders, S1
Napierska, D1
Van Kerckhoven, S1
Hoylaerts, MF2
Hoet, PH2
Andersen, O1
Købler, C1
Atluri, R2
Pozzebon, ME1
Mucelli, SP1
Simion, M1
Rickerby, D1
Mølhave, K1
Han, SG2
Howatt, D1
Daugherty, A1
Gairola, G1
Lehto, M1
Pylkkänen, L1
Happo, M1
Hirvonen, MR1
Pothmann, D1
Simar, S1
Schuler, D1
Dony, E1
Gaering, S1
Le Net, JL1
Okazaki, Y1
Chabagno, JM1
Bessibes, C1
Beausoleil, J1
Nesslany, F1
Régnier, JF1
Frank, EA2
Birch, ME2
Ursini, CL1
Maiello, R1
Ciervo, A1
Fresegna, AM1
Buresti, G1
Superti, F1
Marchetti, M1
Iavicoli, S1
Cavallo, D1
Brown, TA1
Lee, JW1
Porter, V1
Fredriksen, H1
Kim, M1
Carreira, VS1
Fukuda, M1
Kato, H1
Nakamura, A1
Shinohara, N1
Uchino, K1
Kling, K1
Thomsen, BL1
Clausen, PA1
Cartwright, MM1
Schmuck, SC1
Corredor, C1
Scoville, DK1
Chisholm, CR1
Wilkerson, HW1
Afsharinejad, Z1
Bammler, TK1
Posner, JD1
Shutthanandan, V1
Baer, DR1
Altemeier, WA1
Kavanagh, TJ1
Christophersen, DV1
Andersen, MH1
Connell, SP1
Barfod, KK1
Thomsen, MB1
Miller, MR1
Duffin, R2
Lykkesfeldt, J1
Loft, S1
Roursgaard, M1
Møller, P1
Kinaret, P1
Rydman, E1
Karisola, P1
Lähde, A1
Koivisto, J1
Jokiniemi, J1
Inoue, K1
Takano, H1
Koike, E1
Yanagisawa, R1
Sakurai, M1
Tasaka, S1
Ishizaka, A1
Shimada, A1
Cho, WS1
Jeong, J1
Yi, J1
Choi, K1
Park, K1
Tong, H1
McGee, JK1
Saxena, RK1
Kodavanti, UP1
Devlin, RB1
Gilmour, MI1
Müller, L1
Riediker, M1
Wick, P1
Mohr, M1
Gehr, P2
Rothen-Rutishauser, B2
Ellinger-Ziegelbauer, H1
Sriram, K2
Leonard, S2
Battelli, L2
Schwegler-Berry, D2
Chen, BT3
Endo, M2
Konduru, NV2
Feng, W1
Allen, BL2
Conroy, J2
Volkov, Y2
Vlasova, II1
Belikova, NA1
Kapralov, A1
Tyurina, YY3
Franks, J1
Stolz, D1
Gou, P1
Klein-Seetharaman, J1
Star, A3
Kayat, J1
Gajbhiye, V1
Tekade, RK1
Jain, NK1
Reddy, AR1
Reddy, YN1
Krishna, DR1
Himabindu, V1
Zang, JJ1
Nie, H1
Wang, TC1
Deng, XY1
Gu, YQ1
Liu, ZH1
Jia, G1
Teeguarden, JG1
Webb-Robertson, BJ1
Waters, KM1
Varnum, SM1
Jacobs, JM1
Pounds, JG1
Zanger, RC1
Roda, E1
Coccini, T1
Acerbi, D1
Barni, S1
Vaccarone, R1
Manzo, L1
Huizar, I2
Midgette, YA1
Kukoly, C1
Chen, P3
Ke, PC3
Podila, R3
Rao, AM3
Wingard, CJ3
Dobbs, L2
Barna, BP2
Kavuru, MS1
Shurin, GV1
Young, SH2
Ge, C1
Meng, L1
Du, J1
Chang, Y1
Ravichandran, P1
Baluchamy, S1
Gopikrishnan, R1
Biradar, S1
Ramesh, V1
Goornavar, V1
Thomas, R1
Wilson, BL1
Jeffers, R1
Hall, JC1
Ramesh, GT1
Katwa, P2
Walters, DM1
Brown, JM2
Mühlfeld, C1
Poland, CA1
Brandenberger, C1
Murphy, FA1
Donaldson, K1
Kapralov, AA1
Feng, WH2
St Croix, CM1
Lang, MA1
Watkins, SC1
Kotchey, GP1
Mohamed, BM1
Meade, AD1
Mercer, R2
Swedin, L1
Arrighi, R1
Andersson-Willman, B1
Murray, A1
Chen, Y1
Karlsson, MC1
Georén, SK1
Barragan, A1
Scheynius, A1
Kobayashi, N1
Tanaka, J1
Fukumuro, M1
Hasegawa, K1
Nakajima, M1
Hayashi, M1
Willard, P1
Tsukada, T1
Munekane, F1
Frazer, DG2
Urankar, RN1
Lust, RM1
Mann, E1
Hilderbrand, SC1
Harrison, BS1
Girtsman, TA1
Beamer, CA1
Manke, A1
Rojanasakul, Y1
Stapleton, PA1
Minarchick, VC1
Cumpston, AM1
Scabilloni, J1
Nurkiewicz, TR1
Xiang, C1
Patel, J1
McPeek, M1
Wingard, C1
Johnson, VJ1
Potapovich, AI1
Gorelik, O1
Arepalli, S2
Antonini, J1
Evans, DE1
Ku, BK1
Ramsey, D1
Maynard, A1
Baron, P1
Lam, CW1
James, JT1
McCluskey, R1
Hunter, RL1
Nemmar, A1
Vandervoort, P1
Dinsdale, D1
Fabisiak, JP1
Roberts, JR1
Antonini, JM1
Kommineni, C1
Reynolds, J1
Barchowsky, A1
Andrews, R1
Gairola, CG1
Bhalla, DK1

Reviews

8 reviews available for methane and Experimental Lung Inflammation

ArticleYear
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor P

2016
Signaling Pathways Implicated in Carbon Nanotube-Induced Lung Inflammation.
    Frontiers in immunology, 2020, Volume: 11

    Topics: Animals; Humans; Lung; Nanotubes, Carbon; Pneumonia; Pulmonary Fibrosis; Signal Transduction

2020
Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation.
    Advanced drug delivery reviews, 2013, Volume: 65, Issue:15

    Topics: Animals; Chronic Disease; Cytokines; Eosinophils; Humans; Inflammation Mediators; Macrophages; Nanot

2013
Pulmonary toxicity of carbon nanotubes: a systematic report.
    Nanomedicine : nanotechnology, biology, and medicine, 2011, Volume: 7, Issue:1

    Topics: Animals; Humans; Lung; Models, Theoretical; Nanotubes, Carbon; Pneumonia

2011
Carbon nanotubes as delivery systems for respiratory disease: do the dangers outweigh the potential benefits?
    Expert review of respiratory medicine, 2011, Volume: 5, Issue:6

    Topics: Animals; Disease Progression; Drug Carriers; Humans; Nanotechnology; Nanotubes, Carbon; Neoplasms; P

2011
[Pulmonary toxicity of manufactured nanomaterials].
    Nihon eiseigaku zasshi. Japanese journal of hygiene, 2012, Volume: 67, Issue:3

    Topics: Administration, Inhalation; Animals; Inhalation Exposure; Lung; Maximum Allowable Concentration; Nan

2012
Pulmonary toxicity and fibrogenic response of carbon nanotubes.
    Toxicology mechanisms and methods, 2013, Volume: 23, Issue:3

    Topics: Animals; Blood-Air Barrier; Capillary Permeability; DNA Damage; Humans; Inflammation Mediators; Lung

2013
A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks.
    Critical reviews in toxicology, 2006, Volume: 36, Issue:3

    Topics: Air Pollutants; Animals; Environmental Health; Granuloma, Respiratory Tract; Heart; Humans; Inhalati

2006

Trials

1 trial available for methane and Experimental Lung Inflammation

ArticleYear
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor P

2016

Other Studies

91 other studies available for methane and Experimental Lung Inflammation

ArticleYear
Association Between Energy Prices and US Hospital Patient Outcomes.
    Southern medical journal, 2017, Volume: 110, Issue:4

    Topics: Coal; Commerce; Electricity; Energy-Generating Resources; Heart Failure; Hospital Mortality; Hospita

2017
[On 3 cases of chemical pneumonitis caused by irritant gases].
    Yokohama medical bulletin, 1962, Volume: 13

    Topics: Acetylene; Azo Compounds; Chlorine; Gases; Irritants; Methane; Pneumonia

1962
Pulmonary delivery of the broad-spectrum matrix metalloproteinase inhibitor marimastat diminishes multiwalled carbon nanotube-induced circulating bioactivity without reducing pulmonary inflammation.
    Particle and fibre toxicology, 2021, 09-08, Volume: 18, Issue:1

    Topics: Animals; Bronchoalveolar Lavage Fluid; Endothelial Cells; Hydroxamic Acids; Lung; Matrix Metalloprot

2021
Pulmonary toxicity, cytotoxicity, and genotoxicity of submicron-diameter carbon fibers with different diameters and lengths.
    Toxicology, 2022, 01-30, Volume: 466

    Topics: Animals; Carbon Fiber; Cell Survival; Cytokines; Lung; Macrophages, Alveolar; Male; Mutagenicity Tes

2022
Myeloid ABCG1 Deficiency Enhances Apoptosis and Initiates Efferocytosis in Bronchoalveolar Lavage Cells of Murine Multi-Walled Carbon Nanotube-Induced Granuloma Model.
    International journal of molecular sciences, 2021, Dec-21, Volume: 23, Issue:1

    Topics: Animals; Apoptosis; ATP Binding Cassette Transporter, Subfamily G, Member 1; Bronchoalveolar Lavage;

2021
Crosstalk between gut microbiota and lung inflammation in murine toxicity models of respiratory exposure or co-exposure to carbon nanotube particles and cigarette smoke extract.
    Toxicology and applied pharmacology, 2022, 07-15, Volume: 447

    Topics: Animals; Cigarette Smoking; Dysbiosis; Gastrointestinal Microbiome; Lung; Mice; Nanotubes, Carbon; P

2022
18β-Glycyrrhetinic acid monoglucuronide (GAMG) alleviates single-walled carbon nanotubes (SWCNT)-induced lung inflammation and fibrosis in mice through PI3K/AKT/NF-κB signaling pathway.
    Ecotoxicology and environmental safety, 2022, Sep-01, Volume: 242

    Topics: Animals; Collagen; Fibrosis; Glycyrrhetinic Acid; Lung; Mice; Nanotubes, Carbon; NF-kappa B; Phospha

2022
Effects of inhalation of multi-walled carbon nanotube (MWCNT) on respiratory syncytial virus (RSV) infection in mice.
    The Journal of toxicological sciences, 2023, Volume: 48, Issue:7

    Topics: Animals; Bronchoalveolar Lavage Fluid; Inhalation Exposure; Lung; Mice; Mice, Inbred C57BL; Nanotube

2023
Role of the protease-activated receptor-2 (PAR2) in the exacerbation of house dust mite-induced murine allergic lung disease by multi-walled carbon nanotubes.
    Particle and fibre toxicology, 2023, 08-14, Volume: 20, Issue:1

    Topics: Allergens; Animals; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Fibrosis; Hypersensitivity

2023
Resolution of Pulmonary Inflammation Induced by Carbon Nanotubes and Fullerenes in Mice: Role of Macrophage Polarization.
    Frontiers in immunology, 2020, Volume: 11

    Topics: Animals; Fullerenes; Macrophage Activation; Macrophages; Mice; Nanotubes, Carbon; Pneumonia

2020
Inhaled multi-walled carbon nanotubes differently modulate global gene and protein expression in rat lungs.
    Nanotoxicology, 2021, Volume: 15, Issue:2

    Topics: Administration, Inhalation; Animals; Bronchoalveolar Lavage Fluid; Female; Inhalation Exposure; Lung

2021
Pulmonary inflammatory and fibrogenic response induced by graphitized multi-walled carbon nanotube involved in cGAS-STING signaling pathway.
    Journal of hazardous materials, 2021, 09-05, Volume: 417

    Topics: Animals; Membrane Proteins; Mice; Nanotubes, Carbon; Nucleotidyltransferases; Pneumonia; Signal Tran

2021
STAT1-dependent and -independent pulmonary allergic and fibrogenic responses in mice after exposure to tangled versus rod-like multi-walled carbon nanotubes.
    Particle and fibre toxicology, 2017, 07-17, Volume: 14, Issue:1

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cell Proliferation; Cytokines; Epithelial Cells; Genetic Pred

2017
Basic study of intratracheal instillation study of nanomaterials for the estimation of the hazards of nanomaterials.
    Industrial health, 2018, Feb-07, Volume: 56, Issue:1

    Topics: Animals; Bronchoalveolar Lavage Fluid; Lung; Male; Nanoparticles; Nanotubes, Carbon; Neutrophils; Pn

2018
Length, but Not Reactive Edges, of Cup-stack MWCNT Is Responsible for Toxicity and Acute Lung Inflammation.
    Toxicologic pathology, 2018, Volume: 46, Issue:1

    Topics: Animals; Humans; Macrophages; Male; Mice; Mice, Inbred C57BL; Nanotubes, Carbon; Pneumonia

2018
Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis.
    Mutation research. Genetic toxicology and environmental mutagenesis, 2017, Volume: 823

    Topics: Animals; Bronchoalveolar Lavage Fluid; Carcinogenesis; Cell Proliferation; Chemical Phenomena; Comet

2017
A 104-week pulmonary toxicity assessment of long and short single-wall carbon nanotubes after a single intratracheal instillation in rats.
    Inhalation toxicology, 2017, Volume: 29, Issue:11

    Topics: Animals; Bronchi; Comet Assay; DNA Damage; Inhalation Exposure; Lung; Male; Nanotubes, Carbon; Pneum

2017
Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice.
    Journal of immunotoxicology, 2018, Volume: 15, Issue:1

    Topics: Animals; Antigen Presentation; Asbestos, Crocidolite; Biomimetic Materials; Bronchoalveolar Lavage F

2018
Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles.
    Mutagenesis, 2017, 12-31, Volume: 32, Issue:6

    Topics: Animals; Bronchoalveolar Lavage Fluid; DNA Breaks, Double-Stranded; Female; Lung; Mice, Inbred C57BL

2017
Granulomatous lung inflammation is nanoparticle type-dependent.
    Experimental lung research, 2018, Volume: 44, Issue:1

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cadmium; Granuloma; Mice; Nanoparticles; Nanotubes, Carbon; P

2018
Macrophage polarization and activation at the interface of multi-walled carbon nanotube-induced pulmonary inflammation and fibrosis.
    Nanotoxicology, 2018, Volume: 12, Issue:2

    Topics: Animals; Arginase; Inflammation; Lung; Macrophages; Male; Mice; Nanotubes, Carbon; Nitric Oxide Synt

2018
Multi-walled carbon nanotube-induced inhalation toxicity: Recognizing nano bis-demethoxy curcumin analog as an ameliorating candidate.
    Nanomedicine : nanotechnology, biology, and medicine, 2018, Volume: 14, Issue:6

    Topics: Administration, Inhalation; Animals; Antineoplastic Agents; Curcumin; Cytokines; Diarylheptanoids; M

2018
Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month.
    Nanotoxicology, 2018, Volume: 12, Issue:7

    Topics: Acute Disease; Animals; Cell Survival; Cellulose; Cytokines; Female; Humans; Immunity, Innate; Inhal

2018
Physicochemical predictors of Multi-Walled Carbon Nanotube-induced pulmonary histopathology and toxicity one year after pulmonary deposition of 11 different Multi-Walled Carbon Nanotubes in mice.
    Basic & clinical pharmacology & toxicology, 2019, Volume: 124, Issue:2

    Topics: Amyloid; Animals; Behavior, Animal; DNA; DNA Damage; Female; Granuloma; Liver; Lung; Mice; Mice, Inb

2019
Long-term polarization of alveolar macrophages to a profibrotic phenotype after inhalation exposure to multi-wall carbon nanotubes.
    PloS one, 2018, Volume: 13, Issue:10

    Topics: Air Pollutants; Air Pollution; Animals; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Female

2018
Nanoparticles in the lungs of old mice: Pulmonary inflammation and oxidative stress without procoagulant effects.
    The Science of the total environment, 2018, Dec-10, Volume: 644

    Topics: Animals; Inflammation; Interleukin-1beta; Lung; Mice; Nanoparticles; Nanotubes, Carbon; Oxidative St

2018
Lung deposition patterns of MWCNT vary with degree of carboxylation.
    Nanotoxicology, 2019, Volume: 13, Issue:2

    Topics: Animals; Epithelial Cells; Inhalation Exposure; Lung; Macrophages, Alveolar; Male; Mice; Mice, Inbre

2019
Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades.
    Nature nanotechnology, 2019, Volume: 14, Issue:7

    Topics: Animals; Breast Neoplasms; Cell Line, Tumor; Female; Humans; Lung Neoplasms; Mice, Inbred BALB C; Na

2019
Multiwalled Carbon Nanotubes of Varying Size Lead to DNA Methylation Changes That Correspond to Lung Inflammation and Injury in a Mouse Model.
    Chemical research in toxicology, 2019, 08-19, Volume: 32, Issue:8

    Topics: Animals; Cytokines; Disease Models, Animal; DNA; DNA Methylation; Female; Lung Injury; Male; Mice; M

2019
Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model.
    Nanotoxicology, 2014, Volume: 8, Issue:3

    Topics: Analysis of Variance; Animals; Bronchoalveolar Lavage Fluid; Carrier Proteins; Cell Survival; Inflam

2014
Pulmonary DWCNT exposure causes sustained local and low-level systemic inflammatory changes in mice.
    European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2013, Volume: 84, Issue:2

    Topics: Animals; Antioxidants; Bronchoalveolar Lavage Fluid; Cytokines; Female; Glutathione; Granulocytes; L

2013
Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice.
    Reproductive toxicology (Elmsford, N.Y.), 2013, Volume: 41

    Topics: Animals; Bronchoalveolar Lavage Fluid; Female; Fertility; Liver; Lung; Male; Mice; Mice, Inbred C57B

2013
Dual acute proinflammatory and antifibrotic pulmonary effects of short palate, lung, and nasal epithelium clone-1 after exposure to carbon nanotubes.
    American journal of respiratory cell and molecular biology, 2013, Volume: 49, Issue:5

    Topics: Animals; Cell Line; Chemotaxis; Glycoproteins; Immunity, Innate; Immunity, Mucosal; Inflammation Med

2013
System-based identification of toxicity pathways associated with multi-walled carbon nanotube-induced pathological responses.
    Toxicology and applied pharmacology, 2013, Oct-15, Volume: 272, Issue:2

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cells, Cultured; Computational Biology; Environmental Polluta

2013
Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes.
    Particle and fibre toxicology, 2013, Jul-30, Volume: 10

    Topics: Aerosols; Albumins; Animals; Bronchoalveolar Lavage Fluid; Fibrillar Collagens; Inhalation Exposure;

2013
Analysis of pulmonary surfactant in rat lungs after intratracheal instillation of short and long multi-walled carbon nanotubes.
    Inhalation toxicology, 2013, Volume: 25, Issue:11

    Topics: Administration, Inhalation; Animals; Bronchoalveolar Lavage Fluid; Leukocyte Count; Lung; Male; Nano

2013
Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons.
    American journal of physiology. Lung cellular and molecular physiology, 2014, Volume: 306, Issue:2

    Topics: Administration, Inhalation; Animals; Asbestos; Bronchoalveolar Lavage Fluid; Bronchopneumonia; Carbo

2014
The metrics of MWCNT-induced pulmonary inflammation are dependent on the selected testing regimen.
    Regulatory toxicology and pharmacology : RTP, 2014, Volume: 68, Issue:3

    Topics: Animals; Dose-Response Relationship, Drug; Lung; Models, Biological; Nanotubes, Carbon; No-Observed-

2014
Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung.
    Archives of toxicology, 2014, Volume: 88, Issue:9

    Topics: Administration, Inhalation; Animals; Apoptosis; Biomarkers; Cell Line, Transformed; Female; Fibrosis

2014
ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes.
    Free radical biology & medicine, 2014, Volume: 73

    Topics: Animals; Antioxidants; Bronchoalveolar Lavage Fluid; Cytokines; Deferoxamine; Electron Spin Resonanc

2014
Inhalation of rod-like carbon nanotubes causes unconventional allergic airway inflammation.
    Particle and fibre toxicology, 2014, Oct-16, Volume: 11

    Topics: Aerosols; Air Pollutants; Animals; Cytokines; Eosinophilia; Female; Gene Expression Regulation; Immu

2014
Pulmonary and hemostatic toxicity of multi-walled carbon nanotubes and zinc oxide nanoparticles after pulmonary exposure in Bmal1 knockout mice.
    Particle and fibre toxicology, 2014, Nov-14, Volume: 11

    Topics: Air Pollutants; Anemia, Hemolytic; Animals; Anti-Inflammatory Agents, Non-Steroidal; ARNTL Transcrip

2014
mRNA and miRNA regulatory networks reflective of multi-walled carbon nanotube-induced lung inflammatory and fibrotic pathologies in mice.
    Toxicological sciences : an official journal of the Society of Toxicology, 2015, Volume: 144, Issue:1

    Topics: Animals; Computational Biology; Databases, Genetic; Disease Models, Animal; Gene Expression Profilin

2015
MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs.
    Toxicology and applied pharmacology, 2015, Apr-01, Volume: 284, Issue:1

    Topics: Animals; Bronchoalveolar Lavage Fluid; DNA Damage; Dose-Response Relationship, Drug; Female; Gene Ex

2015
Pulmonary and atherogenic effects of multi-walled carbon nanotubes (MWCNT) in apolipoprotein-E-deficient mice.
    Journal of toxicology and environmental health. Part A, 2015, Volume: 78, Issue:4

    Topics: Animals; Apolipoproteins E; Atherosclerosis; Bronchoalveolar Lavage Fluid; Cardiovascular System; Ch

2015
A Single Aspiration of Rod-like Carbon Nanotubes Induces Asbestos-like Pulmonary Inflammation Mediated in Part by the IL-1 Receptor.
    Toxicological sciences : an official journal of the Society of Toxicology, 2015, Volume: 147, Issue:1

    Topics: Animals; Asbestos; Asbestos, Crocidolite; CD4-Positive T-Lymphocytes; Chemokines; Cytokines; Macroph

2015
Lung inflammation and lack of genotoxicity in the comet and micronucleus assays of industrial multiwalled carbon nanotubes Graphistrength(©) C100 after a 90-day nose-only inhalation exposure of rats.
    Particle and fibre toxicology, 2015, Jul-10, Volume: 12

    Topics: Aerosols; Animals; Bronchoalveolar Lavage Fluid; Comet Assay; DNA Damage; DNA Glycosylases; Dose-Res

2015
MyD88 mediates in vivo effector functions of alveolar macrophages in acute lung inflammatory responses to carbon nanotube exposure.
    Toxicology and applied pharmacology, 2015, Nov-01, Volume: 288, Issue:3

    Topics: Acute Disease; Animals; Calcium; Cells, Cultured; Chemical Phenomena; Disease Models, Animal; Interl

2015
Evaluation of uptake, cytotoxicity and inflammatory effects in respiratory cells exposed to pristine and -OH and -COOH functionalized multi-wall carbon nanotubes.
    Journal of applied toxicology : JAT, 2016, Volume: 36, Issue:3

    Topics: Biological Assay; Carboxylic Acids; Cell Line, Tumor; Cell Membrane; Cell Survival; Dose-Response Re

2016
Alterations in DNA methylation corresponding with lung inflammation and as a biomarker for disease development after MWCNT exposure.
    Nanotoxicology, 2016, Volume: 10, Issue:4

    Topics: Animals; Biomarkers; DNA Methylation; Inhalation Exposure; Interferon-gamma; Mice; Nanotubes, Carbon

2016
Suppression of basal and carbon nanotube-induced oxidative stress, inflammation and fibrosis in mouse lungs by Nrf2.
    Nanotoxicology, 2016, Volume: 10, Issue:6

    Topics: Animals; Cytokines; Dose-Response Relationship, Drug; Lung; Macrophages; Mice; Mice, Inbred C57BL; M

2016
Carbon Nanotube and Asbestos Exposures Induce Overlapping but Distinct Profiles of Lung Pathology in Non-Swiss Albino CF-1 Mice.
    Toxicologic pathology, 2016, Volume: 44, Issue:2

    Topics: Alveolar Epithelial Cells; Animals; Apoptosis; Asbestos, Crocidolite; Histocytochemistry; Inhalation

2016
In vivo activation of a T helper 2-driven innate immune response in lung fibrosis induced by multi-walled carbon nanotubes.
    Archives of toxicology, 2016, Volume: 90, Issue:9

    Topics: Acute Disease; Animals; Chronic Disease; Cytokines; Disease Progression; Gene Expression Profiling;

2016
Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes.
    Toxicology letters, 2016, Aug-22, Volume: 257

    Topics: Animals; Cytokines; Gene Expression Profiling; Inflammation Mediators; Inhalation Exposure; Lung; Ly

2016
Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity.
    Nanotoxicology, 2016, Volume: 10, Issue:9

    Topics: Animals; Bronchoalveolar Lavage Fluid; Comet Assay; DNA Breaks; Dose-Response Relationship, Drug; Fe

2016
The pulmonary inflammatory response to multiwalled carbon nanotubes is influenced by gender and glutathione synthesis.
    Redox biology, 2016, Volume: 9

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cytokines; Female; Fibrosis; Gene Expression Regulation; Glut

2016
Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-deficient mice.
    Toxicology, 2016, Sep-14, Volume: 371

    Topics: Animals; Apolipoproteins E; Bronchoalveolar Lavage Fluid; Cardiovascular Diseases; Diet; DNA Damage;

2016
Inhalation and Oropharyngeal Aspiration Exposure to Rod-Like Carbon Nanotubes Induce Similar Airway Inflammation and Biological Responses in Mouse Lungs.
    ACS nano, 2017, 01-24, Volume: 11, Issue:1

    Topics: Administration, Inhalation; Animals; Female; Inhalation Exposure; Lung; Mice; Mice, Inbred C57BL; Na

2017
Effects of pulmonary exposure to carbon nanotubes on lung and systemic inflammation with coagulatory disturbance induced by lipopolysaccharide in mice.
    Experimental biology and medicine (Maywood, N.J.), 2008, Volume: 233, Issue:12

    Topics: Animals; Blood Coagulation Disorders; Chemokines; Cytokines; Fibrinogen; Inflammation; Lipopolysacch

2008
Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation.
    Toxicology, 2009, May-17, Volume: 259, Issue:3

    Topics: Animals; B-Lymphocytes; Bronchoalveolar Lavage Fluid; Cytokines; Histocytochemistry; Immunoglobulin

2009
Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice.
    Toxicology and applied pharmacology, 2009, Sep-15, Volume: 239, Issue:3

    Topics: Air Pollutants; Animals; Blood Cell Count; Bronchoalveolar Lavage Fluid; Female; Hemodynamics; Inhal

2009
Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways.
    Journal of the Royal Society, Interface, 2010, Feb-06, Volume: 7 Suppl 1

    Topics: Alveolar Epithelial Cells; Coculture Techniques; Dendritic Cells; Humans; Interleukin-8; Lung; Macro

2010
Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 113, Issue:1

    Topics: Aerosols; Air Pollutants; Animals; Body Burden; Body Weight; Bronchoalveolar Lavage Fluid; Drinking;

2010
Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period.
    Toxicology, 2009, Dec-21, Volume: 266, Issue:1-3

    Topics: Aerosols; Airway Remodeling; Animals; Bronchoalveolar Lavage Fluid; Cluster Analysis; Dose-Response

2009
Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes.
    Toxicology, 2010, Mar-10, Volume: 269, Issue:2-3

    Topics: Animals; Bronchoalveolar Lavage Fluid; Dose-Response Relationship, Drug; Inhalation Exposure; Lung;

2010
Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit.
    Regulatory toxicology and pharmacology : RTP, 2010, Volume: 57, Issue:1

    Topics: Animals; Bronchoalveolar Lavage Fluid; Dose-Response Relationship, Drug; Female; Inhalation Exposure

2010
Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation.
    Nature nanotechnology, 2010, Volume: 5, Issue:5

    Topics: Animals; Humans; Immunoglobulin G; Mice; Mice, Inbred C57BL; Models, Molecular; Nanotubes, Carbon; N

2010
Pulmonary toxicity assessment of multiwalled carbon nanotubes in rats following intratracheal instillation.
    Environmental toxicology, 2012, Volume: 27, Issue:4

    Topics: Animals; Bronchoalveolar Lavage Fluid; Lung; Lung Injury; Male; Nanotubes, Carbon; Pneumonia; Quartz

2012
Pulmonary toxicity in mice exposed to low and medium doses of water-soluble multi-walled carbon nanotubes.
    Journal of nanoscience and nanotechnology, 2010, Volume: 10, Issue:12

    Topics: Analysis of Variance; Animals; Dose-Response Relationship, Drug; Histocytochemistry; Lung; Lung Inju

2010
Comparative proteomics and pulmonary toxicity of instilled single-walled carbon nanotubes, crocidolite asbestos, and ultrafine carbon black in mice.
    Toxicological sciences : an official journal of the Society of Toxicology, 2011, Volume: 120, Issue:1

    Topics: Animals; Asbestos, Crocidolite; Bronchoalveolar Lavage Fluid; Chromatography, High Pressure Liquid;

2011
Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes intratracheally instilled in rats: morphohistochemical evaluations.
    Histology and histopathology, 2011, Volume: 26, Issue:3

    Topics: Administration, Inhalation; Animals; Collagen Type I; Female; Immunohistochemistry; In Situ Nick-End

2011
Novel murine model of chronic granulomatous lung inflammation elicited by carbon nanotubes.
    American journal of respiratory cell and molecular biology, 2011, Volume: 45, Issue:4

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cell Adhesion Molecules; Cytokines; Disease Models, Animal; G

2011
Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure.
    ACS nano, 2011, Jul-26, Volume: 5, Issue:7

    Topics: Animals; Cell Count; Dendritic Cells; Female; Immunosuppressive Agents; Lung; Mice; Nanotubes, Carbo

2011
Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes.
    Nanotoxicology, 2012, Volume: 6, Issue:5

    Topics: Administration, Inhalation; Analysis of Variance; Animals; Biomarkers; Bronchoalveolar Lavage Fluid;

2012
Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice.
    The Journal of biological chemistry, 2011, Aug-26, Volume: 286, Issue:34

    Topics: Aerosols; Animals; Antioxidants; Apoptosis; Caspase 3; Caspase 8; Lung; Materials Testing; Mice; Mic

2011
Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice.
    Particle and fibre toxicology, 2011, Aug-18, Volume: 8

    Topics: Animals; Bronchoalveolar Lavage Fluid; Collagen; Cytokines; Dose-Response Relationship, Drug; Inhala

2011
Differential effects of long and short carbon nanotubes on the gas-exchange region of the mouse lung.
    Nanotoxicology, 2012, Volume: 6

    Topics: Animals; Electron Spin Resonance Spectroscopy; Female; Gases; Immunohistochemistry; Lung; Mice; Mice

2012
Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice.
    PloS one, 2012, Volume: 7, Issue:3

    Topics: Animals; Bronchoalveolar Lavage Fluid; Chemokine CCL2; Female; Fibrosis; Interleukin-6; Lung; Mice;

2012
Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos.
    Particle and fibre toxicology, 2012, Apr-10, Volume: 9

    Topics: Animals; Asbestos, Crocidolite; Bronchoalveolar Lavage Fluid; Cell Proliferation; Collagen; Cytokine

2012
Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii.
    Particle and fibre toxicology, 2012, May-23, Volume: 9

    Topics: Animals; Bronchoalveolar Lavage Fluid; Immunity, Cellular; Intubation, Intratracheal; Lung; Mice; Mi

2012
In vivo genotoxicity study of single-wall carbon nanotubes using comet assay following intratracheal instillation in rats.
    Regulatory toxicology and pharmacology : RTP, 2012, Volume: 64, Issue:1

    Topics: Animals; Comet Assay; DNA Damage; Inhalation Exposure; Intubation, Intratracheal; Lung; Male; Mutage

2012
Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes.
    Nanotoxicology, 2013, Volume: 7, Issue:7

    Topics: Aerosols; Albumins; Animals; Bronchoalveolar Lavage Fluid; Cell Survival; Cytokines; Electron Spin R

2013
Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes.
    Particle and fibre toxicology, 2012, Oct-16, Volume: 9

    Topics: Administration, Inhalation; Animals; Bronchoalveolar Lavage Fluid; Carboxylic Acids; Chemokine CCL11

2012
IL-1R signalling is critical for regulation of multi-walled carbon nanotubes-induced acute lung inflammation in C57Bl/6 mice.
    Nanotoxicology, 2014, Volume: 8, Issue:1

    Topics: Analysis of Variance; Animals; Bronchoalveolar Lavage Fluid; Collagen; Eosinophilia; Mice; Mice, Inb

2014
Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study.
    International journal of molecular sciences, 2012, Oct-24, Volume: 13, Issue:11

    Topics: Acetylcholine; Administration, Inhalation; Animals; Arterial Pressure; Bronchoalveolar Lavage Fluid;

2012
NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination.
    Inhalation toxicology, 2012, Volume: 24, Issue:14

    Topics: Animals; Carrier Proteins; Caspase 1; Caspase Inhibitors; Cathepsin B; Cells, Cultured; Cytokines; I

2012
The role of PPARγ in carbon nanotube-elicited granulomatous lung inflammation.
    Respiratory research, 2013, Jan-23, Volume: 14

    Topics: Animals; Bronchoalveolar Lavage Fluid; Granuloma, Respiratory Tract; Lung; Mice; Mice, Inbred C57BL;

2013
Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice.
    American journal of physiology. Lung cellular and molecular physiology, 2005, Volume: 289, Issue:5

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cell Line; Cytokines; Female; gamma-Glutamyltransferase; Glut

2005
Enhanced peripheral thrombogenicity after lung inflammation is mediated by platelet-leukocyte activation: role of P-selectin.
    Journal of thrombosis and haemostasis : JTH, 2007, Volume: 5, Issue:6

    Topics: Animals; Blood Platelets; Disease Models, Animal; Female; Granulocytes; Leukocytes; Male; Mice; Nano

2007
Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity.
    American journal of respiratory cell and molecular biology, 2008, Volume: 38, Issue:5

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cytokines; Female; Listeria monocytogenes; Listeriosis; Lung;

2008
Acute pulmonary effects of combined exposure to carbon nanotubes and ozone in mice.
    Inhalation toxicology, 2008, Volume: 20, Issue:4

    Topics: Acute Disease; Administration, Inhalation; Air Pollutants; Animals; Biomarkers; Bronchoalveolar Lava

2008