Page last updated: 2024-10-30

metformin and Multiple Myeloma

metformin has been researched along with Multiple Myeloma in 27 studies

Metformin: A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289)
metformin : A member of the class of guanidines that is biguanide the carrying two methyl substituents at position 1.

Multiple Myeloma: A malignancy of mature PLASMA CELLS engaging in monoclonal immunoglobulin production. It is characterized by hyperglobulinemia, excess Bence-Jones proteins (free monoclonal IMMUNOGLOBULIN LIGHT CHAINS) in the urine, skeletal destruction, bone pain, and fractures. Other features include ANEMIA; HYPERCALCEMIA; and RENAL INSUFFICIENCY.

Research Excerpts

ExcerptRelevanceReference
" Metformin has a certain effect on anti-thrombosis, but its role and mechanism in MM-induced thrombosis are still uncovered."8.12Metformin Inhibits Multiple Myeloma Serum-induced Endothelial Cell Thrombosis by Down-Regulating miR-532. ( Dai, X; De, Z; Gao, L; Hu, J; Li, G; Li, L; Xu, F; Zhang, Y, 2022)
"To investigate the effects of metformin on proliferation and apoptosis in multiple myeloma cell line RPMI8226 and U266, and to clarify the molecular mechanism of proliferation inhibition and apoptosis induced by metformin."7.85[Effect of Metformin on Proliferation of Multiple Myeloma Cells]. ( Gui, SY; Liu, ZL; Lu, B; Zhou, HH, 2017)
"FDA-approved ritonavir and metformin effectively target multiple myeloma cell metabolism to elicit cytotoxicity in multiple myeloma."7.81Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. ( Adekola, KU; Bajpai, R; Dalva-Aydemir, S; Kandela, I; Koblinski, JE; Martinez, M; Raje, NS; Rosen, ST; Shanmugam, M; Singhal, S; Wei, C, 2015)
" We defined metformin users as patients with diabetes who were given metformin consistently for 4 years after their diabetes diagnosis and before multiple myeloma development, death, or censorship."7.81Association between metformin use and progression of monoclonal gammopathy of undetermined significance to multiple myeloma in US veterans with diabetes mellitus: a population-based retrospective cohort study. ( Carlsson, NP; Carson, KR; Chang, SH; Colditz, GA; Luo, S; O'Brian, KK; Thomas, TS, 2015)
"Metformin has begun to be discussed as a potentially useful agent on the basis of the results of epidemiological and preclinical research showing that it may be beneficial in patients with leukaemia, lymphomas and multiple myeloma."5.72Reduced Progression of Monoclonal Gammopathy of Undetermined Significance to Multiple Myeloma in Type 2 Diabetes Mellitus: Will Metformin Never Stop Its Pleasant Surprises? ( Papachristou, S; Papanas, N; Popovic, DS, 2022)
"Metformin is a widely prescribed antidiabetic drug with direct antitumor activity against various tumor cell lines."5.48Metformin and FTY720 Synergistically Induce Apoptosis in Multiple Myeloma Cells. ( Cai, Z; Deng, G; He, J; Liu, X; Lv, N; Ma, L; Wu, W; Yan, M; Yao, S; Yu, R; Zhang, E; Zhao, Y; Zi, F, 2018)
" An association between metabolic syndrome, inflammatory cytokinesand incidence of MM has been also described, while the use of metformin and statins has been identified as a positive prognostic factor for the disease course."5.12Metabolic Disorders in Multiple Myeloma. ( Dimopoulos, MA; Gavriatopoulou, M; Ntanasis-Stathopoulos, I; Paschou, SA, 2021)
" She has a history of chronic hypertension treated with a diuretic, adult-onset diabetes mellitus treated with metformin, and hypothyroidism treated with levothyroxine."4.98Treatment approach for the older, unfit patient with myeloma from diagnosis to relapse: perspectives of a European hematologist. ( Anderson, K; Facon, T, 2018)
" She has a history of chronic hypertension treated with a diuretic, adult-onset diabetes mellitus treated with metformin, and hypothyroidism treated with levothyroxine."4.98Approach to the treatment of the older, unfit patient with myeloma from diagnosis to relapse: perspectives of a US hematologist and a geriatric hematologist. ( Anderson, KC; Wildes, TM, 2018)
" In a recent issue of this journal, Van der Vreken, Oudaert I and colleagues showed that syrosingopine, together with another drug metformin, had a synergistic effect in killing cultured multiple myeloma (MM) cell lines, primary MM blasts from patients, and in a mouse MM model."4.31An acid test for metformin ( Benjamin, D, 2023)
" Metformin has a certain effect on anti-thrombosis, but its role and mechanism in MM-induced thrombosis are still uncovered."4.12Metformin Inhibits Multiple Myeloma Serum-induced Endothelial Cell Thrombosis by Down-Regulating miR-532. ( Dai, X; De, Z; Gao, L; Hu, J; Li, G; Li, L; Xu, F; Zhang, Y, 2022)
"To investigate the effects of metformin on proliferation and apoptosis in multiple myeloma cell line RPMI8226 and U266, and to clarify the molecular mechanism of proliferation inhibition and apoptosis induced by metformin."3.85[Effect of Metformin on Proliferation of Multiple Myeloma Cells]. ( Gui, SY; Liu, ZL; Lu, B; Zhou, HH, 2017)
"FDA-approved ritonavir and metformin effectively target multiple myeloma cell metabolism to elicit cytotoxicity in multiple myeloma."3.81Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. ( Adekola, KU; Bajpai, R; Dalva-Aydemir, S; Kandela, I; Koblinski, JE; Martinez, M; Raje, NS; Rosen, ST; Shanmugam, M; Singhal, S; Wei, C, 2015)
"Despite the clinical benefit of the proteasome inhibitor bortezomib, multiple myeloma (MM) patients invariably relapse through poorly defined mechanisms."3.81Molecular chaperone GRP78 enhances aggresome delivery to autophagosomes to promote drug resistance in multiple myeloma. ( Abd El-Azeem, HG; Abdel Malek, MA; Driscoll, JJ; Elgammal, SA; Jagannathan, S; Malek, E; Sayed, DM; Thabet, NM, 2015)
" We defined metformin users as patients with diabetes who were given metformin consistently for 4 years after their diabetes diagnosis and before multiple myeloma development, death, or censorship."3.81Association between metformin use and progression of monoclonal gammopathy of undetermined significance to multiple myeloma in US veterans with diabetes mellitus: a population-based retrospective cohort study. ( Carlsson, NP; Carson, KR; Chang, SH; Colditz, GA; Luo, S; O'Brian, KK; Thomas, TS, 2015)
"Metformin also plays an important role in the treatment of hematologic tumors, especially in leukemia, lymphoma, and multiple myeloma (MM)."3.01Repurposing Metformin in hematologic tumor: State of art. ( Chen, Y; Hu, M; Jing, L; Ma, T, 2023)
"Metformin has begun to be discussed as a potentially useful agent on the basis of the results of epidemiological and preclinical research showing that it may be beneficial in patients with leukaemia, lymphomas and multiple myeloma."1.72Reduced Progression of Monoclonal Gammopathy of Undetermined Significance to Multiple Myeloma in Type 2 Diabetes Mellitus: Will Metformin Never Stop Its Pleasant Surprises? ( Papachristou, S; Papanas, N; Popovic, DS, 2022)
"Metformin is a commonly used drug for the treatment of diabetes."1.48Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. ( Li, J; Mi, J; Wang, Y; Xu, W; Yan, H; Yan, Z; Zhao, W, 2018)
"Metformin is a widely prescribed antidiabetic drug with direct antitumor activity against various tumor cell lines."1.48Metformin and FTY720 Synergistically Induce Apoptosis in Multiple Myeloma Cells. ( Cai, Z; Deng, G; He, J; Liu, X; Lv, N; Ma, L; Wu, W; Yan, M; Yao, S; Yu, R; Zhang, E; Zhao, Y; Zi, F, 2018)
"Metformin is a widely prescribed antidiabetic drug."1.42Metformin displays anti-myeloma activity and synergistic effect with dexamethasone in in vitro and in vivo xenograft models. ( Cai, Z; Han, XY; He, DH; He, JS; Huang, H; Li, Y; Wang, LJ; Wu, C; Wu, WJ; Yang, L; Yang, Y; Yi, Q; Zhao, Y; Zheng, GF; Zi, FM, 2015)
"Metformin co-treatment with bortezomib suppressed induction of the critical UPR effector glucose-regulated protein 78 (GRP78) to impair autophagosome formation and enhance apoptosis."1.42Pharmacologic screens reveal metformin that suppresses GRP78-dependent autophagy to enhance the anti-myeloma effect of bortezomib. ( Abdel-Malek, MA; Anderson, KC; Driscoll, JJ; Jagannathan, S; Latif, T; Malek, E; Vad, N, 2015)

Research

Studies (27)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's15 (55.56)24.3611
2020's12 (44.44)2.80

Authors

AuthorsStudies
Gavriatopoulou, M2
Paschou, SA1
Ntanasis-Stathopoulos, I2
Dimopoulos, MA1
Papachristou, S1
Popovic, DS1
Papanas, N1
Tentolouris, A1
Eleftheriadou, I1
Malandrakis, P1
Tzeravini, E1
Gao, L1
Li, L1
Hu, J3
Li, G2
Zhang, Y5
Dai, X1
De, Z1
Xu, F1
Zhuang, J1
Zu, J1
Zhou, C1
Sun, Y2
Kong, P1
Jing, Y1
Chen, CJ1
Huang, JY1
Huang, JQ1
Deng, JY1
Shangguan, XH1
Chen, AZ1
Chen, LT1
Wu, WH1
Van der Vreken, A1
Oudaert, I1
Ates, G1
Faict, S1
Vlummens, P1
Satilmis, H1
Fan, R1
Maes, A1
Massie, A1
De Veirman, K1
De Bruyne, E1
Vanderkerken, K1
Menu, E1
Benjamin, D1
Hu, M1
Chen, Y4
Ma, T1
Jing, L1
Nathwani, N1
Palmer, J1
Synold, TW1
Salehian, B1
Rosenzweig, M1
Sanchez, JF1
Hammond, SN1
Adekola, K1
Tomarchio, V1
Chowdhury, A1
Karanes, C1
Htut, M1
Sahebi, F1
Siddiqi, T1
Krishnan, A1
Forman, SJ1
Rosen, ST2
Kocemba-Pilarczyk, KA1
Trojan, S1
Ostrowska, B1
Lasota, M1
Dudzik, P1
Kusior, D1
Kot, M1
Nguépy Keubo, FR1
Mboua, PC1
Djifack Tadongfack, T1
Fokouong Tchoffo, E1
Tasson Tatang, C1
Ide Zeuna, J1
Noupoue, EM1
Tsoplifack, CB1
Folefack, GO1
Kettani, M1
Bandelier, P1
Huo, J1
Li, H4
Yu, D1
Arulsamy, N1
AlAbbad, S1
Sardot, T1
Lekashvili, O1
Decato, D1
Lelj, F1
Alexander Ross, JB1
Rosenberg, E1
Nazir, H1
Muthuswamy, N1
Louis, C1
Jose, S1
Prakash, J1
Buan, MEM1
Flox, C1
Chavan, S1
Shi, X1
Kauranen, P1
Kallio, T1
Maia, G1
Tammeveski, K1
Lymperopoulos, N1
Carcadea, E1
Veziroglu, E1
Iranzo, A1
M Kannan, A1
Arunamata, A1
Tacy, TA1
Kache, S1
Mainwaring, RD1
Ma, M1
Maeda, K1
Punn, R1
Noguchi, S1
Hahn, S3
Iwasa, Y3
Ling, J2
Voccio, JP2
Kim, Y3
Song, J3
Bascuñán, J2
Chu, Y1
Tomita, M1
Cazorla, M1
Herrera, E1
Palomeque, E1
Saud, N1
Hoplock, LB1
Lobchuk, MM1
Lemoine, J1
Li, X10
Henson, MA1
Unsihuay, D1
Qiu, J1
Swaroop, S1
Nagornov, KO1
Kozhinov, AN1
Tsybin, YO1
Kuang, S1
Laskin, J1
Zin, NNINM1
Mohamad, MN1
Roslan, K1
Abdul Wafi, S1
Abdul Moin, NI1
Alias, A1
Zakaria, Y1
Abu-Bakar, N1
Naveed, A1
Jilani, K1
Siddique, AB1
Akbar, M1
Riaz, M1
Mushtaq, Z1
Sikandar, M1
Ilyas, S1
Bibi, I1
Asghar, A1
Rasool, G1
Irfan, M1
Li, XY1
Zhao, S1
Fan, XH1
Chen, KP1
Hua, W1
Liu, ZM1
Xue, XD1
Zhou, B1
Zhang, S2
Xing, YL1
Chen, MA1
Neradilek, MB1
Wu, XT1
Zhang, D2
Huang, W1
Cui, Y1
Yang, QQ1
Li, HW1
Zhao, XQ1
Hossein Rashidi, B1
Tarafdari, A1
Ghazimirsaeed, ST1
Shahrokh Tehraninezhad, E1
Keikha, F1
Eslami, B1
Ghazimirsaeed, SM1
Jafarabadi, M1
Silvani, Y1
Lovita, AND1
Maharani, A1
Wiyasa, IWA1
Sujuti, H1
Ratnawati, R1
Raras, TYM1
Lemin, AS1
Rahman, MM1
Pangarah, CA1
Kiyu, A1
Zeng, C2
Du, H1
Lin, D1
Jalan, D1
Rubagumya, F1
Hopman, WM1
Vanderpuye, V1
Lopes, G1
Seruga, B1
Booth, CM1
Berry, S1
Hammad, N1
Sajo, EA1
Okunade, KS1
Olorunfemi, G1
Rabiu, KA1
Anorlu, RI1
Xu, C2
Xiang, Y1
Xu, X1
Zhou, L2
Dong, X1
Tang, S1
Gao, XC1
Wei, CH1
Zhang, RG1
Cai, Q1
He, Y1
Tong, F1
Dong, JH1
Wu, G1
Dong, XR1
Tang, X1
Tao, F1
Xiang, W1
Zhao, Y5
Jin, L1
Tao, H1
Lei, Y1
Gan, H1
Huang, Y1
Chen, L3
Shan, A1
Zhao, H2
Wu, M2
Ma, Q1
Wang, J4
Zhang, E3
Zhang, J3
Li, Y6
Xue, F1
Deng, L1
Liu, L2
Yan, Z3
Wang, Y3
Meng, J1
Chen, G2
Anastassiadou, M1
Bernasconi, G1
Brancato, A1
Carrasco Cabrera, L1
Greco, L1
Jarrah, S1
Kazocina, A1
Leuschner, R1
Magrans, JO1
Miron, I1
Nave, S1
Pedersen, R1
Reich, H1
Rojas, A1
Sacchi, A1
Santos, M1
Theobald, A1
Vagenende, B1
Verani, A1
Du, L1
Liu, X3
Ren, Y1
Li, J8
Li, P1
Jiao, Q1
Meng, P1
Wang, F2
Wang, YS1
Wang, C3
Zhou, X2
Wang, W1
Wang, S2
Hou, J1
Zhang, A1
Lv, B1
Gao, C1
Pang, D1
Lu, K1
Ahmad, NH1
Wang, L1
Zhu, J2
Zhang, L2
Zhuang, T1
Tu, J1
Zhao, Z1
Qu, Y1
Yao, H1
Wang, X5
Lee, DF1
Shen, J3
Wen, L1
Huang, G2
Xie, X1
Zhao, Q1
Hu, W1
Wu, X1
Lu, J2
Li, M1
Li, W2
Wu, W3
Du, F1
Ji, H1
Yang, X2
Xu, Z1
Wan, L1
Wen, Q1
Cho, CH1
Zou, C1
Xiao, Z1
Liao, J1
Su, X1
Bi, Z1
Su, Q1
Huang, H2
Wei, Y2
Gao, Y2
Na, KJ1
Choi, H1
Oh, HR1
Kim, YH1
Lee, SB1
Jung, YJ1
Koh, J1
Park, S1
Lee, HJ1
Jeon, YK1
Chung, DH1
Paeng, JC1
Park, IK1
Kang, CH1
Cheon, GJ1
Kang, KW1
Lee, DS1
Kim, YT1
Pajuelo-Lozano, N1
Alcalá, S1
Sainz, B1
Perona, R1
Sanchez-Perez, I1
Logotheti, S1
Marquardt, S1
Gupta, SK1
Richter, C1
Edelhäuser, BAH1
Engelmann, D1
Brenmoehl, J1
Söhnchen, C1
Murr, N1
Alpers, M1
Singh, KP1
Wolkenhauer, O1
Heckl, D1
Spitschak, A1
Pützer, BM1
Liao, Y1
Cheng, J1
Kong, X1
Li, S1
Zhang, M4
Zhang, H1
Yang, T2
Dong, Y1
Xu, Y1
Yuan, Z1
Cao, J1
Zheng, Y1
Luo, Z1
Mei, Z1
Yao, Y1
Liu, Z2
Liang, C1
Yang, H1
Song, Y1
Yu, K1
Zhu, C1
Huang, Z1
Qian, J1
Ge, J1
Wang, H2
Liu, Y4
Mi, Y1
Kong, H1
Xi, D1
Yan, W1
Luo, X1
Ning, Q1
Chang, X2
Zhang, T2
Wang, Q2
Rathore, MG1
Reddy, K1
Chen, H1
Shin, SH1
Ma, WY1
Bode, AM1
Dong, Z1
Mu, W1
Liu, C3
Gao, F1
Qi, Y1
Lu, H1
Zhang, X4
Cai, X1
Ji, RY1
Hou, Y3
Tian, J2
Shi, Y1
Ying, S1
Tan, M1
Feng, G1
Kuang, Y1
Chen, D1
Wu, D3
Zhu, ZQ1
Tang, HX1
Shi, ZE1
Kang, J1
Liu, Q1
Qi, J2
Mu, J1
Cong, Z1
Chen, S2
Fu, D1
Li, Z2
Celestrin, CP1
Rocha, GZ1
Stein, AM1
Guadagnini, D1
Tadelle, RM1
Saad, MJA1
Oliveira, AG1
Bianconi, V1
Bronzo, P1
Banach, M1
Sahebkar, A1
Mannarino, MR1
Pirro, M1
Patsourakos, NG1
Kouvari, M1
Kotidis, A1
Kalantzi, KI1
Tsoumani, ME1
Anastasiadis, F1
Andronikos, P1
Aslanidou, T1
Efraimidis, P1
Georgiopoulos, A1
Gerakiou, K1
Grigoriadou-Skouta, E1
Grigoropoulos, P1
Hatzopoulos, D1
Kartalis, A1
Lyras, A1
Markatos, G1
Mikrogeorgiou, A1
Myroforou, I1
Orkopoulos, A1
Pavlidis, P1
Petras, C1
Riga, M1
Skouloudi, M1
Smyrnioudis, N1
Thomaidis, K1
Tsikouri, GE1
Tsikouris, EI1
Zisimos, K1
Vavoulis, P1
Vitali, MG1
Vitsas, G1
Vogiatzidis, C1
Chantanis, S1
Fousas, S1
Panagiotakos, DB1
Tselepis, AD1
Jungen, C1
Alken, FA1
Eickholt, C1
Scherschel, K1
Kuklik, P1
Klatt, N1
Schwarzl, J1
Moser, J1
Jularic, M1
Akbulak, RO1
Schaeffer, B1
Willems, S1
Meyer, C1
Nowak, JK1
Szczepanik, M1
Trypuć, M1
Pogorzelski, A1
Bobkowski, W1
Grytczuk, M1
Minarowska, A1
Wójciak, R1
Walkowiak, J1
Lu, Y1
Xi, J1
Li, C1
Chen, W2
Hu, X1
Zhang, F1
Wei, H1
Wang, Z1
Gurzu, S1
Jung, I1
Sugimura, H2
Stefan-van Staden, RI1
Yamada, H1
Natsume, H1
Iwashita, Y1
Szodorai, R1
Szederjesi, J1
Yari, D1
Ehsanbakhsh, Z1
Validad, MH1
Langroudi, FH1
Esfandiari, H1
Prager, A1
Hassanpour, K1
Kurup, SP1
Mets-Halgrimson, R1
Yoon, H1
Zeid, JL1
Mets, MB1
Rahmani, B1
Araujo-Castillo, RV1
Culquichicón, C1
Solis Condor, R1
Efendi, F1
Sebayang, SK1
Astutik, E1
Hadisuyatmana, S1
Has, EMM1
Kuswanto, H1
Foroutan, T1
Ahmadi, F1
Moayer, F1
Khalvati, S1
Zhang, Q2
Lyu, Y1
Huang, J1
Yu, N1
Wen, Z1
Hou, H1
Zhao, T1
Gupta, A1
Khosla, N1
Govindasamy, V1
Saini, A1
Annapurna, K1
Dhakate, SR1
Akkaya, Ö1
Chandgude, AL1
Dömling, A1
Harnett, J1
Oakes, K1
Carè, J1
Leach, M1
Brown, D1
Cramer, H1
Pinder, TA1
Steel, A1
Anheyer, D1
Cantu, J1
Valle, J1
Flores, K1
Gonzalez, D1
Valdes, C1
Lopez, J1
Padilla, V1
Alcoutlabi, M1
Parsons, J1
Núñez, K1
Hamed, M1
Fort, D1
Bruce, D1
Thevenot, P1
Cohen, A1
Weber, P1
Menezes, AMB1
Gonçalves, H1
Perez-Padilla, R1
Jarvis, D1
de Oliveira, PD1
Wehrmeister, FC1
Mir, S1
Wong, J1
Ryan, CM1
Bellingham, G1
Singh, M2
Waseem, R1
Eckert, DJ1
Chung, F1
Hegde, H1
Shimpi, N1
Panny, A1
Glurich, I1
Christie, P1
Acharya, A1
English, KL1
Downs, M1
Goetchius, E1
Buxton, R1
Ryder, JW1
Ploutz-Snyder, R1
Guilliams, M1
Scott, JM1
Ploutz-Snyder, LL1
Martens, C1
Goplen, FK1
Aasen, T1
Gjestad, R1
Nordfalk, KF1
Nordahl, SHG1
Inoue, T1
Soshi, S1
Kubota, M1
Marumo, K1
Mortensen, NP1
Caffaro, MM1
Patel, PR2
Uddin, MJ1
Aravamudhan, S1
Sumner, SJ1
Fennell, TR1
Gal, RL1
Cohen, NJ1
Kruger, D1
Beck, RW1
Bergenstal, RM1
Calhoun, P1
Cushman, T1
Haban, A1
Hood, K1
Johnson, ML1
McArthur, T1
Olson, BA1
Weinstock, RS1
Oser, SM1
Oser, TK1
Bugielski, B1
Strayer, H1
Aleppo, G1
Maruyama, H1
Hirayama, K1
Yamashita, M1
Ohgi, K1
Tsujimoto, R1
Takayasu, M1
Shimohata, H1
Kobayashi, M1
Buscagan, TM1
Rees, DC1
Jaborek, JR1
Zerby, HN1
Wick, MP1
Fluharty, FL1
Moeller, SJ1
Razavi, P1
Dickler, MN1
Shah, PD1
Toy, W1
Brown, DN1
Won, HH1
Li, BT1
Shen, R1
Vasan, N1
Modi, S1
Jhaveri, K1
Caravella, BA1
Patil, S1
Selenica, P1
Zamora, S1
Cowan, AM1
Comen, E1
Singh, A1
Covey, A1
Berger, MF1
Hudis, CA1
Norton, L1
Nagy, RJ1
Odegaard, JI1
Lanman, RB1
Solit, DB1
Robson, ME1
Lacouture, ME1
Brogi, E1
Reis-Filho, JS1
Moynahan, ME1
Scaltriti, M1
Chandarlapaty, S1
Papouskova, K1
Moravcova, M1
Masrati, G1
Ben-Tal, N1
Sychrova, H1
Zimmermannova, O1
Fang, J1
Fan, Y1
Luo, T2
Su, H1
Tsetseris, L1
Anthopoulos, TD1
Liu, SF1
Zhao, K1
Sacan, O1
Turkyilmaz, IB1
Bayrak, BB1
Mutlu, O1
Akev, N1
Yanardag, R1
Gruber, S1
Kamnoedboon, P1
Özcan, M1
Srinivasan, M1
Jo, YH1
Oh, HK1
Jeong, SY1
Lee, BG1
Zheng, J1
Guan, H1
Li, D2
Tan, H1
Maji, TK1
J R, A1
Mukherjee, S1
Alexander, R1
Mondal, A1
Das, S1
Sharma, RK1
Chakraborty, NK1
Dasgupta, K1
Sharma, AMR1
Hawaldar, R1
Pandey, M1
Naik, A1
Majumdar, K1
Pal, SK1
Adarsh, KV1
Ray, SK1
Karmakar, D1
Ma, Y2
Gao, W1
Ma, S1
Lin, W1
Zhou, T1
Wu, T1
Wu, Q1
Ye, C1
He, X1
Jiang, F1
Yuan, D1
Chen, Q1
Hong, M1
Chen, K1
Hussain, M1
Razi, SS1
Yildiz, EA1
Zhao, J1
Yaglioglu, HG1
Donato, MD1
Jiang, J1
Jamil, MI1
Zhan, X1
Chen, F1
Cheng, D1
Wu, CT1
Utsunomiya, T1
Ichii, T1
Fujinami, S1
Nakajima, K1
Sanchez, DM1
Raucci, U1
Ferreras, KN1
Martínez, TJ1
Mordi, NA1
Mordi, IR1
Singh, JS1
McCrimmon, RJ1
Struthers, AD1
Lang, CC1
Wang, XW1
Yuan, LJ1
Yang, Y2
Chen, WF1
Luo, R1
Yang, K1
Amarasiri, SS1
Attanayake, AP1
Arawwawala, LDAM1
Jayatilaka, KAPW1
Mudduwa, LKB1
Ogunsuyi, O2
Akanni, O1
Alabi, O1
Alimba, C1
Adaramoye, O1
Cambier, S1
Eswara, S1
Gutleb, AC1
Bakare, A1
Gu, Z1
Cong, J1
Pellegrini, M1
Palmieri, S1
Ricci, A1
Serio, A1
Paparella, A1
Lo Sterzo, C1
Jadeja, SD1
Vaishnav, J1
Mansuri, MS1
Shah, C1
Mayatra, JM1
Shah, A1
Begum, R1
Song, H2
Lian, Y1
Wan, T1
Schultz-Lebahn, A1
Skipper, MT1
Hvas, AM1
Larsen, OH1
Hijazi, Z1
Granger, CB1
Hohnloser, SH1
Westerbergh, J1
Lindbäck, J1
Alexander, JH1
Keltai, M1
Parkhomenko, A1
López-Sendón, JL1
Lopes, RD1
Siegbahn, A1
Wallentin, L1
El-Tarabany, MS1
Saleh, AA1
El-Araby, IE1
El-Magd, MA1
van Ginkel, MPH1
Schijven, MP1
van Grevenstein, WMU1
Schreuder, HWR1
Pereira, EDM1
da Silva, J1
Carvalho, PDS1
Grivicich, I1
Picada, JN1
Salgado Júnior, IB1
Vasques, GJ1
Pereira, MADS1
Reginatto, FH1
Ferraz, ABF1
Vasilenko, EA1
Gorshkova, EN1
Astrakhantseva, IV1
Drutskaya, MS1
Tillib, SV1
Nedospasov, SA1
Mokhonov, VV1
Nam, YW1
Cui, M1
Orfali, R1
Viegas, A1
Nguyen, M1
Mohammed, EHM1
Zoghebi, KA1
Rahighi, S1
Parang, K1
Patterson, KC1
Kahanovitch, U1
Gonçalves, CM1
Hablitz, JJ1
Staruschenko, A1
Mulkey, DK1
Olsen, ML1
Gu, L1
Cao, X1
Mukhtar, A1
Wu, K1
Zhang, YY1
Zhu, Y1
Lu, DZ1
Dong, W1
Bi, WJ1
Feng, XJ1
Wen, LM1
Sun, H1
Qi, MC1
Chang, CC1
Dinh, TK1
Lee, YA1
Wang, FN1
Sung, YC1
Yu, PL1
Chiu, SC1
Shih, YC1
Wu, CY1
Huang, YD1
Lu, TT1
Wan, D1
Sakizadeh, J1
Cline, JP1
Snyder, MA1
Kiely, CJ1
McIntosh, S1
Jiang, X1
Cao, JW1
Zhao, CK1
Yang, R1
Zhang, QY1
Chen, KJ2
Liu, H1
He, Z1
Chen, B1
Wu, J1
Du, X1
Moore, J1
Blank, BR1
Eksterowicz, J1
Sutimantanapi, D1
Yuen, N1
Metzger, T1
Chan, B1
Huang, T1
Chen, X1
Duong, F1
Kong, W1
Chang, JH1
Sun, J1
Zavorotinskaya, T1
Ye, Q1
Junttila, MR1
Ndubaku, C1
Friedman, LS1
Fantin, VR1
Sun, D1
Fei, P1
Xie, Q1
Jiang, Y1
Feng, H1
Chang, Y1
Kang, H1
Xing, M1
Chen, J1
Shao, Z1
Yuan, C1
Wu, Y1
Allan, R1
Canham, K1
Wallace, R1
Singh, D1
Ward, J1
Cooper, A1
Newcomb, C1
Nammour, S1
El Mobadder, M1
Maalouf, E1
Namour, M1
Namour, A1
Rey, G1
Matamba, P1
Matys, J1
Zeinoun, T1
Grzech-Leśniak, K1
Segabinazi Peserico, C1
Garozi, L1
Zagatto, AM1
Machado, FA1
Hirth, JM1
Dinehart, EE1
Lin, YL1
Kuo, YF1
Nouri, SS1
Ritchie, C1
Volow, A1
Li, B2
McSpadden, S1
Dearman, K1
Kotwal, A1
Sudore, RL1
Ward, L1
Thakur, A1
Kondadasula, SV1
Ji, K1
Schalk, DL1
Bliemeister, E1
Ung, J1
Aboukameel, A1
Casarez, E1
Sloane, BF1
Lum, LG1
Xiao, M1
Feng, X1
Gao, R1
Du, B1
Brooks, T1
Zwirner, J1
Hammer, N1
Ondruschka, B1
Jermy, M1
Luengo, A1
Marzo, I1
Reback, M1
Daubit, IM1
Fernández-Moreira, V1
Metzler-Nolte, N1
Gimeno, MC1
Tonchev, I1
Heberman, D1
Peretz, A1
Medvedovsky, AT1
Gotsman, I1
Rashi, Y1
Poles, L1
Goland, S1
Perlman, GY1
Danenberg, HD1
Beeri, R1
Shuvy, M1
Fu, Q1
Yang, D1
Sarapulova, A1
Pang, Q1
Meng, Y1
Wei, L1
Ehrenberg, H1
Kim, CC1
Jeong, SH1
Oh, KH1
Nam, KT1
Sun, JY1
Ning, J1
Duan, Z1
Kershaw, SV1
Rogach, AL1
Gao, Z1
Wang, T1
Li, Q1
Cao, T1
Guo, L1
Fu, Y1
Seeger, ZL1
Izgorodina, EI1
Hue, S1
Beldi-Ferchiou, A1
Bendib, I1
Surenaud, M1
Fourati, S1
Frapard, T1
Rivoal, S1
Razazi, K1
Carteaux, G1
Delfau-Larue, MH1
Mekontso-Dessap, A1
Audureau, E1
de Prost, N1
Gao, SS1
Duangthip, D1
Lo, ECM1
Chu, CH1
Roberts, W1
Rosenheck, RA1
Miyake, T1
Kimoto, E1
Luo, L1
Mathialagan, S1
Horlbogen, LM1
Ramanathan, R1
Wood, LS1
Johnson, JG1
Le, VH1
Vourvahis, M1
Rodrigues, AD1
Muto, C1
Furihata, K1
Sugiyama, Y1
Kusuhara, H1
Gong, Q1
Song, W1
Sun, B1
Cao, P1
Gu, S1
Sun, X1
Zhou, G1
Toma, C1
Khandhar, S1
Zalewski, AM1
D'Auria, SJ1
Tu, TM1
Jaber, WA1
Cho, J2
Suwandaratne, NS1
Razek, S1
Choi, YH1
Piper, LFJ1
Watson, DF1
Banerjee, S1
Xie, S1
Lindsay, AP1
Bates, FS1
Lodge, TP1
Hao, Y1
Chapovetsky, A1
Liu, JJ1
Welborn, M1
Luna, JM1
Do, T1
Haiges, R1
Miller Iii, TF1
Marinescu, SC1
Lopez, SA1
Compter, I1
Eekers, DBP1
Hoeben, A1
Rouschop, KMA1
Reymen, B1
Ackermans, L1
Beckervordersantforth, J1
Bauer, NJC1
Anten, MM1
Wesseling, P1
Postma, AA1
De Ruysscher, D1
Lambin, P1
Qiang, L1
Yang, S1
Cui, YH1
He, YY1
Kumar, SK1
Jacobus, SJ1
Cohen, AD1
Weiss, M1
Callander, N1
Singh, AK1
Parker, TL1
Menter, A1
Parsons, B1
Kumar, P1
Kapoor, P1
Rosenberg, A1
Zonder, JA1
Faber, E1
Lonial, S1
Anderson, KC3
Richardson, PG1
Orlowski, RZ2
Wagner, LI1
Rajkumar, SV1
Hou, G1
Cui, J1
Xie, H1
Sun, Z1
Fang, Z1
Dunstand-Guzmán, E1
Hallal-Calleros, C1
Hernández-Velázquez, VM1
Canales-Vargas, EJ1
Domínguez-Roldan, R1
Pedernera, M1
Peña-Chora, G1
Flores-Pérez, I1
Kim, MJ1
Han, C1
White, K1
Park, HJ1
Ding, D1
Boyd, K1
Rothenberger, C1
Bose, U1
Carmichael, P1
Linser, PJ1
Tanokura, M1
Salvi, R1
Someya, S1
Samuni, A1
Goldstein, S1
Divya, KP1
Dharuman, V1
Feng, J2
Qian, Y1
Cheng, Q1
Ma, H1
Ren, X1
Wei, Q1
Pan, W1
Guo, J1
Situ, B1
An, T1
Zheng, L1
Augusto, S1
Ratola, N1
Tarín-Carrasco, P1
Jiménez-Guerrero, P1
Turco, M1
Schuhmacher, M1
Costa, S1
Teixeira, JP1
Costa, C1
Syed, A1
Marraiki, N1
Al-Rashed, S1
Elgorban, AM1
Yassin, MT1
Chankhanittha, T1
Nanan, S1
Sorokina, KN1
Samoylova, YV1
Gromov, NV1
Ogorodnikova, OL1
Parmon, VN1
Ye, J1
Liao, W1
Zhang, P1
Nabi, M1
Cai, Y1
Li, F1
Alsbou, EM1
Omari, KW1
Adeosun, WA1
Asiri, AM1
Marwani, HM1
Barral, M1
Jemal-Turki, A1
Beuvon, F1
Soyer, P1
Camparo, P1
Cornud, F1
Atwater, BD1
Jones, WS1
Loring, Z1
Friedman, DJ1
Namburath, M1
Papirio, S1
Moscariello, C1
Di Costanzo, N1
Pirozzi, F1
Alappat, BJ1
Sreekrishnan, TR1
Volpin, F1
Woo, YC1
Kim, H1
Freguia, S1
Jeong, N1
Choi, JS1
Phuntsho, S1
Shon, HK1
Domínguez-Zambrano, E1
Pedraza-Chaverri, J1
López-Santos, AL1
Medina-Campos, ON1
Cruz-Rivera, C1
Bueno-Hernández, F1
Espinosa-Cuevas, A1
Bulavaitė, A1
Dalgediene, I1
Michailoviene, V1
Pleckaityte, M1
Sauerbier, P1
Köhler, R1
Renner, G1
Militz, H1
Lu, B1
Gui, SY1
Zhou, HH1
Liu, ZL1
Xu, W1
Zhao, W1
Mi, J1
Yan, H2
Lv, N2
Ma, L1
Yao, S1
Yan, M1
Zi, F1
Deng, G1
He, J1
Cai, Z3
Yu, R1
Facon, T1
Anderson, K1
Wildes, TM1
Mishra, AK1
Dingli, D1
Merriman, K1
Nabaah, A1
Seval, N1
Seval, D1
Lin, H1
Wang, M1
Qazilbash, MH1
Baladandayuthapani, V1
Berry, D1
Lee, MH1
Yeung, SC1
Zi, FM1
He, JS1
Wu, C1
Yang, L1
Wang, LJ1
He, DH1
Wu, WJ1
Zheng, GF1
Han, XY1
Yi, Q1
Dalva-Aydemir, S1
Bajpai, R1
Martinez, M1
Adekola, KU1
Kandela, I1
Wei, C1
Singhal, S1
Koblinski, JE1
Raje, NS1
Shanmugam, M1
Abdel Malek, MA1
Jagannathan, S2
Malek, E2
Sayed, DM1
Elgammal, SA1
Abd El-Azeem, HG1
Thabet, NM1
Driscoll, JJ2
Chang, SH1
Luo, S1
O'Brian, KK1
Thomas, TS1
Colditz, GA1
Carlsson, NP1
Carson, KR1
Abdel-Malek, MA1
Vad, N1
Latif, T1
Hanson, DJ1
Nakamura, S1
Amachi, R1
Hiasa, M1
Oda, A1
Tsuji, D1
Itoh, K1
Harada, T1
Horikawa, K1
Teramachi, J1
Miki, H1
Matsumoto, T1
Abe, M1
Boursi, B1
Mamtani, R1
Yang, YX1
Weiss, BM1

Clinical Trials (1)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Phase II Trial, Open Label, Clinical Activity of Metformin in Combination With High-dose of Dexamethasone (HDdexa) in Patients With Relapsed/Refractory Multiple Myeloma[NCT02967276]Phase 228 participants (Anticipated)Interventional2017-01-31Recruiting
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Reviews

6 reviews available for metformin and Multiple Myeloma

ArticleYear
Metabolic Disorders in Multiple Myeloma.
    International journal of molecular sciences, 2021, Oct-22, Volume: 22, Issue:21

    Topics: Cell Proliferation; Cytokines; Energy Metabolism; Glycolysis; Humans; Metabolic Diseases; Metabolic

2021
Diabetes mellitus and multiple myeloma; common features of two distinct entities.
    Diabetes/metabolism research and reviews, 2022, Volume: 38, Issue:5

    Topics: Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Metformin; Multiple Myeloma; Pioglitazone

2022
Repurposing Metformin in hematologic tumor: State of art.
    Current problems in cancer, 2023, Volume: 47, Issue:4

    Topics: Animals; Diabetes Mellitus, Type 2; Drug Repositioning; Hematologic Neoplasms; Humans; Metformin; Mu

2023
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Treatment approach for the older, unfit patient with myeloma from diagnosis to relapse: perspectives of a European hematologist.
    Hematology. American Society of Hematology. Education Program, 2018, 11-30, Volume: 2018, Issue:1

    Topics: Aged; Diabetes Mellitus; Female; Fractures, Compression; Humans; Hypertension; Kidney Diseases; Metf

2018
Approach to the treatment of the older, unfit patient with myeloma from diagnosis to relapse: perspectives of a US hematologist and a geriatric hematologist.
    Hematology. American Society of Hematology. Education Program, 2018, 11-30, Volume: 2018, Issue:1

    Topics: Aged; Diabetes Mellitus; Female; Fractures, Compression; Health Services for the Aged; Humans; Hyper

2018

Trials

1 trial available for metformin and Multiple Myeloma

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021

Other Studies

21 other studies available for metformin and Multiple Myeloma

ArticleYear
Reduced Progression of Monoclonal Gammopathy of Undetermined Significance to Multiple Myeloma in Type 2 Diabetes Mellitus: Will Metformin Never Stop Its Pleasant Surprises?
    Advances in therapy, 2022, Volume: 39, Issue:6

    Topics: Diabetes Mellitus, Type 2; Disease Progression; Humans; Metformin; Monoclonal Gammopathy of Undeterm

2022
Metformin Inhibits Multiple Myeloma Serum-induced Endothelial Cell Thrombosis by Down-Regulating miR-532.
    Annals of vascular surgery, 2022, Volume: 85

    Topics: Cells, Cultured; Endothelial Protein C Receptor; Fibrinolytic Agents; Human Umbilical Vein Endotheli

2022
Bioinformatic Data Mining for Candidate Drugs Affecting Risk of Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ) in Cancer Patients.
    Disease markers, 2022, Volume: 2022

    Topics: Androgen Antagonists; Androgens; Aspirin; Bisphosphonate-Associated Osteonecrosis of the Jaw; Caspas

2022
Metformin attenuates multiple myeloma cell proliferation and encourages apoptosis by suppressing METTL3-mediated m6A methylation of THRAP3, RBM25, and USP4.
    Cell cycle (Georgetown, Tex.), 2023, Volume: 22, Issue:8

    Topics: Alpha-Ketoglutarate-Dependent Dioxygenase FTO; Apoptosis; Cell Proliferation; DNA-Binding Proteins;

2023
Metformin confers sensitisation to syrosingopine in multiple myeloma cells by metabolic blockage and inhibition of protein synthesis.
    The Journal of pathology, 2023, Volume: 260, Issue:2

    Topics: Antineoplastic Agents; Cell Line, Tumor; Humans; Lactic Acid; Metformin; Monocarboxylic Acid Transpo

2023
An acid test for metformin
    The Journal of pathology, 2023, Volume: 260, Issue:4

    Topics: Animals; Carrier Proteins; Cell Line, Tumor; Glycolysis; Hypoglycemic Agents; Lactic Acid; Metformin

2023
Toxicities Associated With Metformin/Ritonavir Combination Treatment in Relapsed/Refractory Multiple Myeloma.
    Clinical lymphoma, myeloma & leukemia, 2020, Volume: 20, Issue:10

    Topics: Combined Modality Therapy; Female; Humans; Metformin; Middle Aged; Multiple Myeloma; Pilot Projects;

2020
Influence of metformin on HIF-1 pathway in multiple myeloma.
    Pharmacological reports : PR, 2020, Volume: 72, Issue:5

    Topics: Apoptosis; Cell Hypoxia; Cell Line, Tumor; Humans; Hypoxia-Inducible Factor 1; Metformin; Multiple M

2020
[Effect of Metformin on Proliferation of Multiple Myeloma Cells].
    Zhongguo shi yan xue ye xue za zhi, 2017, Volume: 25, Issue:4

    Topics: Apoptosis; Cell Line, Tumor; Cell Proliferation; Humans; Metformin; Multiple Myeloma

2017
Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways.
    Journal of experimental & clinical cancer research : CR, 2018, Mar-20, Volume: 37, Issue:1

    Topics: AMP-Activated Protein Kinases; Animals; Apoptosis; Autophagy; Cell Line, Tumor; Cell Proliferation;

2018
Metformin and FTY720 Synergistically Induce Apoptosis in Multiple Myeloma Cells.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2018, Volume: 48, Issue:2

    Topics: Apoptosis; Caspase 3; Cell Line, Tumor; Cell Proliferation; Drug Synergism; Endoplasmic Reticulum St

2018
Metformin inhibits IL-6 signaling by decreasing IL-6R expression on multiple myeloma cells.
    Leukemia, 2019, Volume: 33, Issue:11

    Topics: Antibodies, Monoclonal; Biomarkers, Tumor; Bortezomib; Cell Line, Tumor; Dexamethasone; Enzyme-Linke

2019
The synergistic effect of PFK15 with metformin exerts anti-myeloma activity via PFKFB3.
    Biochemical and biophysical research communications, 2019, 07-23, Volume: 515, Issue:2

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Cycle Checkpoints; Cell Line, Tumor;

2019
The association of diabetes and anti-diabetic medications with clinical outcomes in multiple myeloma.
    British journal of cancer, 2014, Jul-29, Volume: 111, Issue:3

    Topics: Adult; Aged; Aged, 80 and over; Comorbidity; Diabetes Mellitus, Type 2; Disease Progression; Female;

2014
Metformin displays anti-myeloma activity and synergistic effect with dexamethasone in in vitro and in vivo xenograft models.
    Cancer letters, 2015, Jan-28, Volume: 356, Issue:2 Pt B

    Topics: Animals; Antineoplastic Agents, Hormonal; Apoptosis; Blotting, Western; Cell Cycle; Cell Proliferati

2015
Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2015, Mar-01, Volume: 21, Issue:5

    Topics: AMP-Activated Protein Kinases; Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Disease

2015
Molecular chaperone GRP78 enhances aggresome delivery to autophagosomes to promote drug resistance in multiple myeloma.
    Oncotarget, 2015, Feb-20, Volume: 6, Issue:5

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Autophagy; Bortezomib; Cell L

2015
Association between metformin use and progression of monoclonal gammopathy of undetermined significance to multiple myeloma in US veterans with diabetes mellitus: a population-based retrospective cohort study.
    The Lancet. Haematology, 2015, Volume: 2, Issue:1

    Topics: Aged; Diabetes Mellitus; Female; Humans; Male; Metformin; Middle Aged; Monoclonal Gammopathy of Unde

2015
Pharmacologic screens reveal metformin that suppresses GRP78-dependent autophagy to enhance the anti-myeloma effect of bortezomib.
    Leukemia, 2015, Volume: 29, Issue:11

    Topics: Animals; Antineoplastic Agents; Apoptosis; Autophagy; Bortezomib; Cell Line, Tumor; Drug Synergism;

2015
Effective impairment of myeloma cells and their progenitors by blockade of monocarboxylate transportation.
    Oncotarget, 2015, Oct-20, Volume: 6, Issue:32

    Topics: Cell Death; Cell Line, Tumor; Coumaric Acids; Gene Knockdown Techniques; Humans; Hydrogen-Ion Concen

2015
Impact of metformin on the progression of MGUS to multiple myeloma.
    Leukemia & lymphoma, 2017, Volume: 58, Issue:5

    Topics: Antineoplastic Agents; Case-Control Studies; Disease Progression; Humans; Incidence; Metformin; Mono

2017